6,228 research outputs found

    The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data

    Full text link
    Solar granules are bright patterns surrounded by dark channels called intergranular lanes in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both, the convective upflows and downflows, but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution the net LOS velocity averaged over the whole FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    Full text link
    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 A line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl

    The Infrared Behaviour of the Pure Yang-Mills Green Functions

    Full text link
    We study the infrared behaviour of the pure Yang-Mills correlators using relations that are well defined in the non-perturbative domain. These are the Slavnov-Taylor identity for three-gluon vertex and the Schwinger-Dyson equation for ghost propagator in the Landau gauge. We also use several inputs from lattice simulations. We show that lattice data are in serious conflict with a widely spread analytical relation between the gluon and ghost infrared critical exponents. We conjecture that this is explained by a singular behaviour of the ghost-ghost-gluon vertex function in the infrared. We show that, anyhow, this discrepancy is not due to some lattice artefact since lattice Green functions satisfy the ghost propagator Schwinger-Dyson equation. We also report on a puzzle concerning the infrared gluon propagator: lattice data seem to favor a constant non vanishing zero momentum gluon propagator, while the Slavnov-Taylor identity (complemented with some regularity hypothesis of scalar functions) implies that it should diverge.Comment: 25 pages, 7 figures; replaced version with some references adde and an enlarged discussion of the non-renormalization theorem; second replacement with improved figures and added reference

    Asymptotic behavior of the ghost propagator in SU3 lattice gauge theory

    Full text link
    We study the asymptotic behavior of the ghost propagator in the quenched SU(3) lattice gauge theory with Wilson action. The study is performed on lattices with a physical volume fixed around 1.6 fm and different lattice spacings: 0.100 fm, 0.070 fm and 0.055 fm. We implement an efficient algorithm for computing the Faddeev-Popov operator on the lattice. We are able to extrapolate the lattice data for the ghost propagator towards the continuum and to show that the extrapolated data on each lattice can be described up to four-loop perturbation theory from 2.0 GeV to 6.0 GeV. The three-loop values are consistent with those extracted from previous perturbative studies of the gluon propagator. However the effective \Lambda_{\ms} scale which reproduces the data does depend strongly upon the order of perturbation theory and on the renormalization scheme used in the parametrization. We show how the truncation of the perturbative series can account for the magnitude of the dependency in this energy range. The contribution of non-perturbative corrections will be discussed elsewhere.Comment: 26 pages, 7 figure

    Study of the polarization produced by the Zeeman effect in the solar Mg I b lines

    Full text link
    The next generation of solar observatories aim to understand the magnetism of the solar chromosphere. Therefore, it is crucial to understand the polarimetric signatures of chromospheric spectral lines. For this purpose, we here examine the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6, 5172.7, and 5167.3 A, respectively. We start by describing a simplified atomic model of only 6 levels and 3 line transitions for computing the atomic populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b line transitions assuming non-local thermodynamic conditions and considering only the Zeeman effect using the field-free approximation. We test this simplified atom against more complex ones finding that, although there are differences in the computed profiles, they are small compared with the advantages provided by the simple atom in terms of speed and robustness. After comparing the three Mg I lines, we conclude that the most capable one is the b2 line as b1 forms at similar heights and always show weaker polarization signals while b4 is severely blended with photospheric lines. We also compare Mg I b2 with the K I D1 and Ca II 8542 A lines finding that the former is sensitive to the atmospheric parameters at heights that are in between those covered by the latter two lines. This makes Mg I b2 an excellent candidate for future multi-line observations that aim to seamlessly infer the thermal and magnetic properties of different features in the lower solar atmosphere.Comment: 14 pages, 11 figures, and 5 table

    Is the QCD ghost dressing function finite at zero momentum ?

    Full text link
    We show that a finite non-vanishing ghost dressing function at zero momentum satisfies the scaling properties of the ghost propagator Schwinger-Dyson equation. This kind of Schwinger-Dyson solutions may well agree with lattice data and provides an interesting alternative to the widely spread claim that the gluon dressing function behaves like the inverse squared ghost dressing function, a claim which is at odds with lattice data. We demonstrate that, if the ghost dressing function is less singular than any power of pp, it must be finite non-vanishing at zero momentum: any logarithmic behaviour is for instance excluded. We add some remarks about coupled Schwinger-Dyson analyses.Comment: 8 pages, 2 figure

    Non-Perturbative Approach to the Landau Gauge Gluodynamics

    Full text link
    We discuss a non-perturbative lattice calculation of the ghost and gluon propagators in the pure Yang-Mills theory in Landau gauge. The ultraviolet behaviour is checked up to NNNLO yielding the value \Lambda^{n_f=0}_{\ms}=269(5)^{+12}_{-9}\text{MeV}, and we show that lattice Green functions satisfy the complete Schwinger-Dyson equation for the ghost propagator for all considered momenta. The study of the above propagators at small momenta showed that the infrared divergence of the ghost propagator is enhanced, whereas the gluon propagator seem to remain finite and non-zero. The result for the ghost propagator is consistent with the analysis of the Slavnov-Taylor identity, whereas, according to this analysis, the gluon propagator should diverge in the infrared, a result at odds with other approaches.Comment: To appear in the proceedings of the workshop "Hadron Structure and QCD: from LOW to HIGH energies" (St. Petersburg, Russia, 20-24 September 2005
    • …
    corecore