7,879 research outputs found

    Analysis of horizontal flows in the solar granulation

    Full text link
    Solar limb observations sometimes reveal the presence of a satellite lobe in the blue wing of the Stokes I profile from pixels belonging to granules. The presence of this satellite lobe has been associated in the past to strong line of sight gradients and, as the line of sight component is almost parallel to the solar surface, to horizontal granular flows. We aim to increase the knowledge about these horizontal flows studying a spectropolarimetric observation of the north solar pole. We will make use of two state of the art techniques, the spatial deconvolution procedure that increases the quality of the data removing the stray light contamination, and spectropolarimetric inversions that will provide the vertical stratification of the atmospheric physical parameters where the observed spectral lines form. We inverted the Stokes profiles using a two component configuration, obtaining that one component is strongly blueshifted and displays a temperature enhancement at upper photospheric layers while the second component has low redshifted velocities and it is cool at upper layers. In addition, we examined a large number of cases located at different heliocentric angles, finding smaller velocities as we move from the centre to the edge of the granule. Moreover, the height location of the enhancement on the temperature stratification of the blueshifted component also evolves with the spatial location on the granule being positioned on lower heights as we move to the periphery of the granular structure.Comment: 8 pages, 6 figure

    The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data

    Full text link
    Solar granules are bright patterns surrounded by dark channels called intergranular lanes in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both, the convective upflows and downflows, but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution the net LOS velocity averaged over the whole FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap

    Spectropolarimetric capabilities of Ca II 8542 A line

    Full text link
    The next generation of space and ground-based solar missions aim to study the magnetic properties of the solar chromosphere using the infrared Ca II lines and the He I 10830 {\AA} line. The former seem to be the best candidates to study the stratification of magnetic fields in the solar chromosphere and their relation to the other thermodynamical properties underlying the chromospheric plasma. The purpose of this work is to provide a detailed analysis of the diagnostic capabilities of the Ca II 8542 {\AA} line, anticipating forthcoming observational facilities. We study the sensitivity of the Ca II 8542 {\AA} line to perturbations applied to the physical parameters of reference semi-empirical 1D model atmospheres using response functions and we make use of 3D MHD simulations to examine the expected polarization signals for moderate magnetic field strengths. Our results indicate that the Ca II 8542 {\AA} line is mostly sensitive to the layers enclosed between log\log τ=[0,5.5]\tau=[0,-5.5], under the physical conditions that are present in our model atmospheres. In addition, the simulated magnetic flux tube generates strong longitudinal signals in its centre and moderate transversal signals, due to the vertical expansion of magnetic field lines, in its edge. Thus, observing the Ca II 8542 {\AA} line we will be able to infer the 3D geometry of moderate magnetic field regions.Comment: 15 pages, 14 figures, and 1 tabl

    Study of the polarization produced by the Zeeman effect in the solar Mg I b lines

    Full text link
    The next generation of solar observatories aim to understand the magnetism of the solar chromosphere. Therefore, it is crucial to understand the polarimetric signatures of chromospheric spectral lines. For this purpose, we here examine the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6, 5172.7, and 5167.3 A, respectively. We start by describing a simplified atomic model of only 6 levels and 3 line transitions for computing the atomic populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b line transitions assuming non-local thermodynamic conditions and considering only the Zeeman effect using the field-free approximation. We test this simplified atom against more complex ones finding that, although there are differences in the computed profiles, they are small compared with the advantages provided by the simple atom in terms of speed and robustness. After comparing the three Mg I lines, we conclude that the most capable one is the b2 line as b1 forms at similar heights and always show weaker polarization signals while b4 is severely blended with photospheric lines. We also compare Mg I b2 with the K I D1 and Ca II 8542 A lines finding that the former is sensitive to the atmospheric parameters at heights that are in between those covered by the latter two lines. This makes Mg I b2 an excellent candidate for future multi-line observations that aim to seamlessly infer the thermal and magnetic properties of different features in the lower solar atmosphere.Comment: 14 pages, 11 figures, and 5 table

    Is the QCD ghost dressing function finite at zero momentum ?

    Full text link
    We show that a finite non-vanishing ghost dressing function at zero momentum satisfies the scaling properties of the ghost propagator Schwinger-Dyson equation. This kind of Schwinger-Dyson solutions may well agree with lattice data and provides an interesting alternative to the widely spread claim that the gluon dressing function behaves like the inverse squared ghost dressing function, a claim which is at odds with lattice data. We demonstrate that, if the ghost dressing function is less singular than any power of pp, it must be finite non-vanishing at zero momentum: any logarithmic behaviour is for instance excluded. We add some remarks about coupled Schwinger-Dyson analyses.Comment: 8 pages, 2 figure

    Non-Perturbative Approach to the Landau Gauge Gluodynamics

    Full text link
    We discuss a non-perturbative lattice calculation of the ghost and gluon propagators in the pure Yang-Mills theory in Landau gauge. The ultraviolet behaviour is checked up to NNNLO yielding the value \Lambda^{n_f=0}_{\ms}=269(5)^{+12}_{-9}\text{MeV}, and we show that lattice Green functions satisfy the complete Schwinger-Dyson equation for the ghost propagator for all considered momenta. The study of the above propagators at small momenta showed that the infrared divergence of the ghost propagator is enhanced, whereas the gluon propagator seem to remain finite and non-zero. The result for the ghost propagator is consistent with the analysis of the Slavnov-Taylor identity, whereas, according to this analysis, the gluon propagator should diverge in the infrared, a result at odds with other approaches.Comment: To appear in the proceedings of the workshop "Hadron Structure and QCD: from LOW to HIGH energies" (St. Petersburg, Russia, 20-24 September 2005

    Asymptotic behavior of the ghost propagator in SU3 lattice gauge theory

    Full text link
    We study the asymptotic behavior of the ghost propagator in the quenched SU(3) lattice gauge theory with Wilson action. The study is performed on lattices with a physical volume fixed around 1.6 fm and different lattice spacings: 0.100 fm, 0.070 fm and 0.055 fm. We implement an efficient algorithm for computing the Faddeev-Popov operator on the lattice. We are able to extrapolate the lattice data for the ghost propagator towards the continuum and to show that the extrapolated data on each lattice can be described up to four-loop perturbation theory from 2.0 GeV to 6.0 GeV. The three-loop values are consistent with those extracted from previous perturbative studies of the gluon propagator. However the effective \Lambda_{\ms} scale which reproduces the data does depend strongly upon the order of perturbation theory and on the renormalization scheme used in the parametrization. We show how the truncation of the perturbative series can account for the magnitude of the dependency in this energy range. The contribution of non-perturbative corrections will be discussed elsewhere.Comment: 26 pages, 7 figure

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region III: Chromospheric jets driven by twisted magnetic fields

    Full text link
    We investigate the diagnostic potential of the spectral lines at 850 nm for understanding the magnetism of the lower atmosphere. For that purpose, we use a newly developed 3D simulation of a chromospheric jet to check the sensitivity of the spectral lines to this phenomenon as well as our ability to infer the atmospheric information through spectropolarimetric inversions of noisy synthetic data. We start comparing the benefits of inverting the entire spectrum at 850 nm versus only the Ca II 8542 A spectral line. We found a better match of the input atmosphere for the former case, mainly at lower heights. However, the results at higher layers were not accurate. After several tests, we determined that we need to weight more the chromospheric lines than the photospheric ones in the computation of the goodness of the fit. The new inversion configuration allows us to obtain better fits and consequently more accurate physical parameters. Therefore, to extract the most from multi-line inversions, a proper set of weights needs to be estimated. Besides that, we conclude again that the lines at 850 nm, or a similar arrangement with Ca II 8542 A plus Zeeman sensitive photospheric lines, poses the best observing configuration for examining the thermal and magnetic properties of the lower solar atmosphere.Comment: 14 pages, 11 figure

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region II: A magnetic flux tube scenario

    Full text link
    In this publication we continue the work started in Quintero Noda et al. (2017) examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically dopplershifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5% of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field and we estimate the field strength using the weak field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works demonstrating the capabilities and limitations of the 850 nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.Comment: 12 pages, 12 figures, 0 tables, MNRAS main journal publicatio
    corecore