58 research outputs found

    An interactive meshless cutting model for nonlinear viscoelastic soft tissue in surgical simulators

    Get PDF
    In this paper, we present a novel interactive cutting simulation model for soft tissue based on the meshless framework. Unlike most existing methods that consider the cutting process of soft tissue in an over simplified manner, the presented model is able to simulate the complete cutting process that includes three stages: deformation before cutting open (DBCO), cutting open (CO), and deformation after cutting open (DACO). To characterize the complicated physical and mechanical properties of soft tissue, both nonlinearity and viscoelasticity were incorporated into the equations governing the motion of soft tissue. A line contact model was used for simulating the cutting process after analyzing the two major types of surgical instruments, i.e., scalpel and electrostick. The cutting speed and angle were taken into account in order to improve haptic rendering. Biomechanical tests and simulation experiments verified the validity of the introduced model. Specifically, the displacement vs. cutting force curves can be divided into three segments corresponding to the three stages of the cutting process. The results were also applied in a liver cutting simulating system and satisfactory visual effect and haptic feedback were achieved

    Determination of Malachite Green in Aquaculture Water by Adsorptive Stripping Voltammetry

    Get PDF
    © 2016, Copyright © Taylor & Francis Group, LLC. An adsorptive stripping voltammetric method for the determination of malachite green in aquaculture water has been developed. Initial studies were made using the cyclic voltammetry of malachite green at a glassy carbon electrode in 0.1M phosphate buffer from pH 2 to 10. The redox behavior observed for malachite green was verified by the characterization of malachite green and its reduction product, leucomalachite green. Furthermore, leucomalachite green was found not to interfere with the determination of malachite green at pH 7.4, the optimum pH for malachite green determination. As a result, further studies were performed using adsorptive stripping voltammetry for the determination of malachite green in aquaculture water. The voltammetric waveform, accumulation potential, and accumulation time were optimized. The calibration plot was linear from 0.2µM to 1.2µM for malachite green using differential pulse voltammetry with a sensitivity of 0.8311µA/µM. Using the method of multiple standard addition, aquaculture water fortified with 0.5µM and 0.75µM malachite green provided mean recoveries of 78.79% and 87.20% with coefficients of variation of 2.07% and 1.45%. Therefore, analytical figures of merit suggest that this method provides rapid, simple, economical, and precise determination of malachite green in aquaculture water

    Modeling on fluid flow and inclusion motion in centrifugal continuous casting strands

    Get PDF
    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed

    Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    Get PDF
    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 µM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum

    Particle filtering-based methods for time to failure estimation with a real-world prognostic application

    No full text
    One of core technologies for prognostics is to predict failures before they occur and estimate time to failure (TTF) by using built-in predictive models. The predictive model could be either physics-based model or machine learning-based model. Machine learning-based predictive modeling is an emerging application of machine learning to machinery maintenance. Accurate TTF estimation could help performing predictive action “just-in-time”. However, the developed predictive models sometimes fail to provide a precise TTF estimate. To address this issue, we propose a Particle Filtering (PF)-based method to estimate TTF. After introducing the PF-based algorithm, we present the implementation along with the experimental results obtained from a case study of Auxiliary Power Unit (APU) prognostics. To our best knowledge, this is the first application of PF-based method to APU prognostic. The results demonstrated that the PF-based method is useful for estimating TTF for predictive maintenance and it greatly improved TTF estimation precision for APU prognostics

    Modelling of soft tissue cutting in virtual surgery simulation: A literature review

    No full text
    Haptic and virtual reality-based surgery simulators are starting to be utilized to train surgical residents for some simple procedures, allowing them to operate on virtual human models with the aid of haptic devices with force feedback, overcoming training constraints and limitations such as a shortage of specimens, space, time and usage frequency. Compared with conventional training methods, surgery simulators have many advantages such as being risk-free and reusable, and training sessions can be stored and reviewed by physicians. However, it is very difficult to establish an accurate and efficient model for soft tissue deformation and cutting because human tissue is a special elastomeric material with non-linear, viscoelastic, anisotropic and incompressible properties. The cutting operation can change or destroy the topology of the initial model, making the entire modelling process very challenging. In this paper, four existing soft tissue cutting modelling methods are reviewed in detail - a mesh-based finite element method, a meshless method, a hybrid mesh-based and meshless method (HMMM) and an extended finite element method (XFEM). The advantages and disadvantages of each of these four algorithms are then compared and analysed in terms of a number of criteria, including their calculation speed, simulation precision, convergence and stability. Some suggestions are given for the XFEM and HMMM, which are now hot and active research topics in this field
    corecore