151 research outputs found

    Modified embedded-atom method interatomic potentials for the Mg-Al alloy system

    Full text link
    We developed new modified embedded-atom method (MEAM) interatomic potentials for the Mg-Al alloy system using a first-principles method based on density functional theory (DFT). The materials parameters, such as the cohesive energy, equilibrium atomic volume, and bulk modulus, were used to determine the MEAM parameters. Face-centered cubic, hexagonal close packed, and cubic rock salt structures were used as the reference structures for Al, Mg, and MgAl, respectively. The applicability of the new MEAM potentials to atomistic simulations for investigating Mg-Al alloys was demonstrated by performing simulations on Mg and Al atoms in a variety of geometries. The new MEAM potentials were used to calculate the adsorption energies of Al and Mg atoms on Al (111) and Mg (0001) surfaces. The formation energies and geometries of various point defects, such as vacancies, interstitial defects and substitutional defects, were also calculated. We found that the new MEAM potentials give a better overall agreement with DFT calculations and experiments when compared against the previously published MEAM potentials.Comment: Fixed a referenc

    Differential scanning calorimetry (DSC) and thermodynamic prediction of liquid fraction vs temperature for two high-performance alloys for semi-solid processing (Al-Si-Cu-Mg (319s) and Al-Cu-Ag (201))

    Get PDF
    There is a need to extend the application of semi-solid processing (SSP) to higher performance alloys such as 319s (Al-Si-Cu-Mg) and 201 (Al-Cu-Ag). The melting of these two alloys was investigated using differential scanning calorimetry (DSC) and thermodynamic prediction. The alloys had been processed by magneto-hydrodynamic (MHD) stirring before receipt to produce a microstructure suitable for SSP. The DSC results for the as-received MHD material were compared with those for material which has been taken through a complete DSC cycle and then reheated for a second DSC run. The effects of microsegregation were then analyzed. A higher liquid fraction for a particular temperature is found in the second DSC run than the first. Microstructural observations suggest this is because the intermetallics which form during the first cooling cycle tend to co-located. Quaternary and ternary reactions then occur during the second DSC heat and the co-location leads to enhanced peaks. The calculated liquid fraction is lower with 10 K/min DSC heating rate comparing with 3 K/min at a given temperature. The DSC scan rate must therefore be carefully considered if it is to be used to identify temperature parameters or the suitability of alloys for SSP. In addition, the starting material for DSC must represent the starting material for the SSP. With thermodynamic prediction, the equilibrium condition will provide better guidance for the thixoforming of MHD stirred starting material than the Scheil condition. The Scheil mode approximates more closely with a strongly microsegregated state

    Evolution of intermetallics, dispersoids and elevated-temperature properties at various Fe contents in Al-Mn-Mg 3004 alloys

    Get PDF
    Nowadays, great interests are rising on aluminum alloys for the applications at elevated temperature, driven by the automotive and aerospace industries requiring high strength, light weight and low cost engineering materials. As one of the most promising candidates, Al-Mn-Mg 3004 alloys have been found to possess considerably high mechanical properties and creep resistance at elevated temperature resulted from the precipitation of a large number of thermally stable dispersoids during heat treatment. In present work, the effect of Fe contents on the evolution of microstructure as well as high temperature properties of 3004 alloys has been investigated. Results show that the dominant intermetallic changes from α-Al(MnFe)Si at 0.1 wt. % Fe to Al6(MnFe) at both 0.3 and 0.6 wt. % Fe. In the Fe range of 0.1 to 0.6 wt. % studied, a significant improvement on mechanical properties at elevated temperature has been observed due to the precipitation of dispersoids, and the best combination of yield strength and creep resistance at 573K (300°C) is obtained in the 0.3% Fe alloy with finest size and highest volume fraction of dispersoids. The superior properties obtained at 573K (300°C) makes 3004 alloys more promising for high temperature applications. The relationship between the Fe content and the dispersoid precipitation as well as the materials properties has been discussed

    The effect of setting velocity on the static and fatigue strengths of self-piercing riveted joints for automotive applications

    No full text
    In order to reduce vehicle weight to increase fuel efficiency and reduce CO2 emission, more and more automotive manufacturers are now using lightweight materials, such as aluminium, to build part of or the whole body-in-white structure. Due to the advantages over other joining techniques, self-piercing riveting (SPR) is a main joining technique for aluminium structures. In this paper, the effect of setting velocity/force on the joint quality and performance was studied. It was found that in the range studied, the increase of setting velocity increased the static lap shear strength but reduced the static T peel strength of the SPR joints. The results also suggested that the setting velocity did not have significant influence on the lap shear fatigue strength, but the T peel fatigue strength of the joints was increasing with the increase of setting velocity until it reached certain value. An increase in the setting velocity led to a decrease in the rivet head height and an increase in the interlock. In this study, the results showed that the static lap shear strength of SPR joints increased after corrosion and the setting velocity in the range studied did not have obvious influence on the change of lap shear strength after corrosion
    • …
    corecore