6,080 research outputs found

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices

    Get PDF
    Super-resolution is a fundamental task in imaging, where the goal is to extract fine-grained structure from coarse-grained measurements. Here we are interested in a popular mathematical abstraction of this problem that has been widely studied in the statistics, signal processing and machine learning communities. We exactly resolve the threshold at which noisy super-resolution is possible. In particular, we establish a sharp phase transition for the relationship between the cutoff frequency (mm) and the separation (Δ\Delta). If m>1/Δ+1m > 1/\Delta + 1, our estimator converges to the true values at an inverse polynomial rate in terms of the magnitude of the noise. And when m<(1ϵ)/Δm < (1-\epsilon) /\Delta no estimator can distinguish between a particular pair of Δ\Delta-separated signals even if the magnitude of the noise is exponentially small. Our results involve making novel connections between {\em extremal functions} and the spectral properties of Vandermonde matrices. We establish a sharp phase transition for their condition number which in turn allows us to give the first noise tolerance bounds for the matrix pencil method. Moreover we show that our methods can be interpreted as giving preconditioners for Vandermonde matrices, and we use this observation to design faster algorithms for super-resolution. We believe that these ideas may have other applications in designing faster algorithms for other basic tasks in signal processing.Comment: 19 page

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin.

    Get PDF
    Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by similar to 90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.open118380Ysciescopu

    Computed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivity

    Get PDF
    Terahertz near-field microscopy (THz-NFM) could locally probe low-energy molecular vibration dynamics below diffraction limits, showing promise to decipher intermolecular interactions of biomolecules and quantum matters with unique THz vibrational fingerprints. However, its realization has been impeded by low spatial and spectral resolutions and lack of theoretical models to quantitatively analyze near-field imaging. Here, we show that THz scattering-type scanning near-field optical microscopy (THz s-SNOM) with a theoretical model can quantitatively measure and image such low-energy molecular interactions, permitting computed spectroscopic near-field mapping of THz molecular resonance spectra. Using crystalline-lactose stereo-isomer (anomer) mixtures (i.e., alpha-lactose (>= 95%, w/w) and beta-lactose (<= 4%, w/w)), THz s-SNOM resolved local intermolecular vibrations of both anomers with enhanced spatial and spectral resolutions, yielding strong resonances to decipher conformational fingerprint of the trace beta-anomer impurity. Its estimated sensitivity was similar to 0.147 attomoles in similar to 8 x 10(-4) mu m(3) interaction volume. Our THz s-SNOM platform offers a new path for ultrasensitive molecular fingerprinting of complex mixtures of biomolecules or organic crystals with markedly enhanced spatio-spectral resolutions. This could open up significant possibilities of THz technology in many fields, including biology, chemistry and condensed matter physics as well as semiconductor industries where accurate quantitative mappings of trace isomer impurities are critical but still challenging.11Ysciescopu

    Clustering of Unhealthy Lifestyle and the Risk of Adverse Events in Patients With Atrial Fibrillation

    Get PDF
    BACKGROUND: Little is known regarding the risk of clinical outcomes depending on the clustering of lifestyle behaviors after atrial fibrillation (AF) diagnosis. This study evaluated the association between a cluster of healthy lifestyle behaviors and the risk of adverse outcomes in patients with AF. METHODS: Using the Korean National Insurance Service database, patients who were newly diagnosed with AF between 2009 and 2016 were included. A healthy lifestyle behavior score (HLS) was calculated by assigning 1 point each for non-current smoking, for non-drinking, and for performing regular exercise from the self-reported questionnaire in health examinations. The primary outcome was defined as major adverse cardiovascular event (MACE), including ischemic stroke, myocardial infarction, and hospitalization for heart failure. RESULTS: A total of 208,662 patients were included; 7.1% in HLS 0, 22.7% in HLS 1, 58.6% in HLS 2, and 11.6% in HLS 3 groups. Patients with HLS 1, 2, and 3 were associated with a lower risk of MACE than those with HLS 0 (adjusted hazard ratio [95% confidence interval (CI)]: 0.788 [0.762–0.855], 0.654 [0.604–0.708], and 0.579 [0.527–0.636], respectively). After propensity score weighting, consistent results were observed. The risk reduction of healthy lifestyle combinations was consistently observed in various subgroups, regardless of the CHA(2)DS(2)-VASc score and oral anticoagulant use. CONCLUSION: Increased number of healthy lifestyle behaviors was significantly associated with lower MACE risk in patients with new-onset AF. These findings support the promotion of a healthy lifestyle to reduce the risk of adverse events in patients with AF

    Longitudinal Patterns in Antithrombotic Therapy in Patients with Atrial Fibrillation after Percutaneous Coronary Intervention in the Non-Vitamin K Oral Anticoagulant Era:A Nationwide Population-Based Study

    Get PDF
    We investigated whether longitudinal patterns in antithrombotic therapy have changed after the introduction of non-vitamin K oral anticoagulants (NOACs) in patients with atrial fibrillation (AF) who underwent percutaneous coronary intervention (PCI). Using a claims database of the Korean AF population who underwent PCI between 2012 and 2016 (n = 18,691), we analyzed prescription records of oral anticoagulants (OACs) and antiplatelets at 3-month intervals over 2 years after PCI. The study population was stratified (pre-NOAC, transition, and NOAC era) using time-periods of NOAC introduction in Korea and an expansion of reimbursement for NOAC in AF as indicators. The overall rates of OAC were low at baseline (24.9%, 26.9%, and 35.2% in pre-NOAC, transition, and NOAC era, respectively), contrary to high rates of dual antiplatelet therapy (DAPT) (73.3%, 71.4%, and 63.6%). However, OAC prescription rates were increased at 1-year (18.5%, 22.5%, and 31.6%), and 2-year follow-up (17.8%, 24.2%, and 31.8%) from pre-NOAC to NOAC era. In NOAC era, 63.5% of baseline OAC prescriptions comprised NOAC, of which 96.4% included triple therapy with DAPT. Over 2 years, we observed increasing rates of double therapy with a single antiplatelet (18.3% and 20.0% at 1- and 2-year follow-up) and OAC monotherapy (2.7% and 8.9% at 1- and 2-year follow-up)

    Net clinical benefit of antithrombotic therapy for atrial fibrillation patients with stable coronary artery disease

    Get PDF
    OBJECTIVES: To compare the net clinical benefit of oral anticoagulant (OAC) monotherapy to OAC plus single antiplatelet therapy (SAPT) in patients with atrial fibrillation (AF) and stable coronary artery disease (CAD) at 1- and 3-year after percutaneous coronary intervention (PCI). BACKGROUND: It has not been studied whether the net clinical benefit of the antithrombotic treatment options differs depending on the elapsed time from the index PCI. METHODS: Using the Korean nationwide claims database, we included AF patients who underwent PCI from 2009 to 2019 and constructed two cohorts: 1- and 3-year after PCI. In each cohort, the baseline characteristics of two groups were balanced using propensity score weighting. Ischemic stroke, myocardial infarction, major bleeding, and composite clinical outcomes were analyzed. RESULTS: Among patients with 1-year after PCI, OAC monotherapy (n = 678), and OAC plus SAPT (n = 3,159) showed comparable results for all clinical outcomes. In patients with 3-year after PCI, OAC monotherapy (n = 1,038) and OAC plus SAPT (n = 2,128) showed comparable results for ischemic stroke and myocardial infarction, but OAC monotherapy was associated with a lower risk of composite clinical outcomes (HR 0.762, 95% CI 0.607–0.950), mainly driven by the reduction of major bleeding risk (HR 0.498, 95% CI 0.345–0.701). CONCLUSION: Oral anticoagulant monotherapy may be a comparable choice for patients with AF and stable CAD compared to OAC plus SAPT. In patients with stable CAD more than 3-year after index PCI, OAC monotherapy would be a better choice, being associated with less major bleeding and a positive net clinical benefit

    Spin-orbit coupled molecular quantum magnetism realized in inorganic solid

    Get PDF
    Molecular quantum magnetism involving an isolated spin state is of particular interest due to the characteristic quantum phenomena underlying spin qubits or molecular spintronics for quantum information devices, as demonstrated in magnetic metal-organic molecular systems, the so-called molecular magnets. Here we report the molecular quantum magnetism realized in an inorganic solid Ba3Yb2Zn5O11 with spin-orbit coupled pseudospin-1/2 Yb3+ ions. The magnetization represents the magnetic quantum values of an isolated Yb-4 tetrahedron with a total (pseudo) spin 0, 1 and 2. Inelastic neutron scattering results reveal that a large Dzyaloshinsky-Moriya interaction originating from strong spin-orbit coupling of Yb 4f is a key ingredient to explain magnetic excitations of the molecular magnet states. The Dzyaloshinsky-Moriya interaction allows a non-adiabatic quantum transition between avoided crossing energy levels, and also results in unexpected magnetic behaviours in conventional molecular magnets.1141Ysciescopu
    corecore