58 research outputs found

    Effects of Transport and Feeding Strategies Before Transportation on Redox Homeostasis and Gastric Ulceration in Horses

    Get PDF
    Transportation may lead to oxidative stress (OS) and gastric ulceration in horses, and optimal feed man-agement before, or during, transportation is unclear. This study aimed to evaluate the effects of trans-portation after three different feeding strategies on OS and to explore possible associations between OS and equine gastric ulcer syndrome (EGUS). Twenty-six mares were transported by truck for 12 hours without food or water. Horses were randomly divided into 3 groups; (1) fed 1 hour before departure (BD), (2) fed 6 hours BD, (3) fed 12 hours BD. Clinical examinations and blood collections were per-formed at approximately 4 hours BD (T0), at unloading (T1), 8 hours (T2) and 60 hours (T3) after un-loading. Gastroscopy was conducted prior to departure, and at T1 and T3. Although OS parameters re-mained in the normal range, transportation was associated with increased reactive oxygen metabolites (ROMS) at unloading (P = 0.004), with differences between horses fed 1 hour and 12 hours BD ( P < .05). The level of total antioxidant (PTAS) was affected by both transportation and feeding strategy ( P = 0.019), with horses fed 1 hour BD demonstrating greater PTAS at T = 0, and a different response in comparison with the other groups and the literature. Nine horses demonstrated clinically significant ulceration of the squamous mucosa at T1 but, although weak correlations were evident between OS parameters and ulcer scores, univariate logistic regression showed no associations. This study suggests that feed management prior to a long journey (12 hours) may affect oxidative balance. Further studies are needed to understand the nexus between feed management before and during transport, transport-related OS and EGUS.(c) 2023 Elsevier Inc. All rights reserved

    Prospective study on the excretion of mucous stools and its association with age, gender, and feces output in captive giant pandas

    Get PDF
    The giant panda (Ailuropoda melanoleuca) has evolved a large number of mucous glands in the intestinal lining to adapt to the digestion of high-fiber foods. However, in captive pandas, excessive mucus might form a mass and then be eliminated, which is often accompanied by discomfort and decreased activity. This event is called \u2018mucous excretion\u2019. The causes of mucus excretions in captive pandas, however, remain unknown. The aims of this study were to document the occurrence of mucus excretion and to investigate its possible associations with pandas\u2019 age, gender, and feces output. Eighteen giant pandas were studied at the Beijing Zoo from April 2003 to June 2017, and a total of 900 occurrences of mucous excretion and 32,856 daily defecation outputs in weight were recorded. The likelihood of mucous excretion occurrence decreased by 11.34% for each 1 kg of fecal output (Z = 124.12, p < 0.0001), while it increased by 5.89% per year of age (Z = 4.02, p < 0.0001). However, individual differences in gender had no significant effect on the mucous occurrence (Z = 120.75, p = 0.4508). A monthly change in mucus occurrence was also found. The mean frequency of mucus occurrence was significantly higher in October. In August, time (month) change showed the biggest negative influence on feces output but the biggest positive influence on mucus excretion (seasonal factors were 122.261 and 0.0126, respectively). Our results documented the occurrence of mucous excretions and confirmed their possible associations with the pandas\u2019 age and fecal output based on a 15-year prospective study. This study not only adds to our knowledge of panda physiology but also suggests the need for further studies examining the causes of the excretion of mucous stools in captive pandas. Reducing the incidence of mucous excretion would promote ex situ conservation and enhance panda welfare

    Research priorities to fill knowledge gaps in wild boar management measures that could improve the control of African swine fever in wild boar populations

    Get PDF
    The European Commission asked EFSA to provide study designs for the investigation of four research domains (RDs) according to major gaps in knowledge identified by EFSA in a report published in 2019: (RD 1) African swine fever (ASF) epidemiology in wild boar; (RD 2) ASF transmission by vectors; (RD 3) African swine fever virus (ASFV) survival in the environment, and (RD 4) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU. In this Scientific Opinion, the second RD on ASF epidemiology in wild boar is addressed. Twenty-nine research objectives were proposed by the working group and broader ASF expert networks and 23 of these research objectives met a prespecified inclusion criterion. Fourteen of these 23 research objectives met the predefined threshold for selection and so were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study; and (6) if it was a priority for risk managers. Finally, after further elimination of three of the proposed research objectives due to overlapping scope of studies published during the development of this opinion, 11 research priorities were elaborated into short research proposals, considering the potential impact on ASF management and the period of one year for the research activities

    Assessment of the control measures of the category A diseases of Animal Health Law: peste des petits ruminants

    Get PDF
    EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases (‘Animal Health Law’). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for peste des petits ruminants (PPR). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radii of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, except for the first affected establishments detected, where 33 days is recommended. It was concluded that beyond the protection (3 km) and the surveillance zones (10 km) only 9.6% (95% CI: 3.1–25.8%) and 2.3% (95% CI: 1–5.5%) of the infections from an affected establishment may occur, respectively. This may be considered sufficient to contain the disease spread (95% probability of containing transmission corresponds to 5.3 km). Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad-hoc requests in relation to PPR

    Assessment of the control measures of the category A diseases of Animal Health Law: Classical Swine Fever

    Get PDF
    EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases (‘Animal Health Law’). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Classical swine fever (CSF). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, details of the model used for answering these questions are presented in this opinion as well as the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Here, several recommendations are given on how to increase the effectiveness of some of the sampling procedures. Based on the average length of the period between virus introduction and the reporting of a CSF suspicion, the monitoring period was assessed as non-effective. In a similar way, it was recommended that the length of the measures in the protection and surveillance zones were increased from 15 to 25 days in the protection zone and from 30 to 40 days in the surveillance zone. Finally, the analysis of existing Kernels for CSF suggested that the radius of the protection and the surveillance zones comprise 99% of the infections from an affected establishment if transmission occurred. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to CSF

    Welfare of broilers on farm

    Get PDF
    This Scientific Opinion considers the welfare of domestic fowl (Gallus gallus) related to the production of meat (broilers) and includes the keeping of day-old chicks, broiler breeders, and broiler chickens. Currently used husbandry systems in the EU are described. Overall, 19 highly relevant welfare consequences (WCs) were identified based on severity, duration and frequency of occurrence: 'bone lesions', 'cold stress', 'gastro-enteric disorders', 'group stress', 'handling stress', 'heat stress', 'isolation stress', 'inability to perform comfort behaviour', 'inability to perform exploratory or foraging behaviour', 'inability to avoid unwanted sexual behaviour', 'locomotory disorders', 'prolonged hunger', 'prolonged thirst', 'predation stress', 'restriction of movement', 'resting problems', 'sensory under- and overstimulation', 'soft tissue and integument damage' and 'umbilical disorders'. These WCs and their animal-based measures (ABMs) that can identify them are described in detail. A variety of hazards related to the different husbandry systems were identified as well as ABMs for assessing the different WCs. Measures to prevent or correct the hazards and/or mitigate each of the WCs are listed. Recommendations are provided on quantitative or qualitative criteria to answer specific questions on the welfare of broilers and related to genetic selection, temperature, feed and water restriction, use of cages, light, air quality and mutilations in breeders such as beak trimming, de-toeing and comb dubbing. In addition, minimal requirements (e.g. stocking density, group size, nests, provision of litter, perches and platforms, drinkers and feeders, of covered veranda and outdoor range) for an enclosure for keeping broiler chickens (fast-growing, slower-growing and broiler breeders) are recommended. Finally, 'total mortality', 'wounds', 'carcass condemnation' and 'footpad dermatitis' are proposed as indicators for monitoring at slaughter the welfare of broilers on-farm

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    corecore