10 research outputs found
Unexpected depletion in plasma choline and phosphatidylcholine concentrations in a pregnant woman with bipolar affective disorder being treated with lithuim, haloperidol and benztropine: a case report
<p>Abstract</p> <p>Introduction</p> <p>Patients with bipolar affective disorder can be effectively managed with pharmacological intervention. This case report describes a pregnant woman with a ten-year history of bipolar affective disorder that was being treated with lithium, haloperidol and benztropine.</p> <p>Case presentation</p> <p>The patient had a normal pregnancy, but developed an elevated blood pressure and started to lose weight at 36 weeks of gestation. During pregnancy, plasma concentrations of choline and phosphatidylcholine are increased to meet the demands of the foetus. However, our findings in this case included depletion of plasma choline and phosphatidylcholine concentrations. Other unusual outcomes included low placental weight and low infant birth weight.</p> <p>Conclusion</p> <p>This report suggests that the pharmacological management of this patient could possibly account for the findings.</p
Umbilical choline and related methylamines betaine and dimethylglycine in relation to birth weight
Item does not contain fulltextBackground:Low birth weight (LBW) is associated with increased morbidity and mortality for the newborn and risk of chronic disease in adulthood. Choline plays an essential role in the integrity of cell membranes, methylation reactions, and memory development. We examined whether choline, betaine, and dimethylglycine (DMG) concentrations were associated with LBW in Dutch women.Methods:Blood was sampled from umbilical cords (UCs) at delivery in singleton pregnancies (n = 1,126). Maternal blood was sampled at 30-34 wk of gestational age (GA) (n = 366). We calculated birth weights standardized for GA and defined LBW as standardized birth weight </=2,500 g.Results:Maternal concentrations were lower as compared with UC concentrations and were not associated with birth weight. UC choline and betaine were inversely associated with birth weight (beta = -60 (-89, -31) and beta = -65 (-94, -36), respectively), whereas UC DMG was positively associated with birth weight (beta = 35 (6.1, 63)). Odds ratios for LBW were 4.12 (1.15, 14.78), 5.68 (1.24, 25.91), and 0.48 (0.09, 2.65) for the highest UC choline, betaine, and DMG quartiles, respectively, as compared with the lowest quartiles.Conclusion:We observed an increased risk of LBW with increased umbilical choline and betaine in venous UC blood. These results might reflect a change in choline consumption or metabolism or a disturbed placental function
What Choline Metabolism Can Tell Us About the Underlying Mechanisms of Fetal Alcohol Spectrum Disorders
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD