354 research outputs found

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films

    Full text link
    Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane and out-of-plane Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films using energy dependent soft x-ray momentum-resolved photoemission spectroscopy. We show that the SS originates in nested regions confined to out-of-plane FSs, which are drastically modified compared to in-plane FSs. From precise reciprocal space maps in successive zones, we obtain the associated real space compressive strain of 1.5+-0.5% along c-axis. An autocorrelation analysis quantifies the incommensurate ordering vector q=(2pi/a)(0,0,~0.86), favoring a SS and consistent with magneto-optic Kerr effect experiments. The results reveal the importance of in-plane and out-of-plane FS mapping for ultrathin films.Comment: 4 pages, 3 figure

    Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting

    Full text link
    In layered polar semiconductor BiTeI, giant Rashba-type spin-split band dispersions show up due to the crystal structure asymmetry and the strong spin-orbit interaction. Here we investigate the 3-dimensional (3D) bulk band structures of BiTeI using the bulk-sensitive hνh\nu-dependent soft x-ray angle resolved photoemission spectroscopy (SX-ARPES). The obtained band structure is shown to be well reproducible by the first-principles calculations, with huge spin splittings of 300{\sim}300 meV at the conduction-band-minimum and valence-band-maximum located in the kz=π/ck_z=\pi/c plane. It provides the first direct experimental evidence of the 3D Rashba-type spin splitting in a bulk compound.Comment: 9 pages, 4 figure

    Temperature-Dependence of Magnetically-Active Charge Excitations in Magnetite across the Verwey Transition

    Get PDF
    We have studied the electronic structure of bulk single crystals and epitaxial films of magnetite Fe3_3O4_4. Fe 2p2p core-level spectra show clear differences between hard x-ray (HAX-) and soft x-ray (SX-) photoemission spectroscopy (PES), indicative of surface effects. The bulk-sensitive spectra exhibit temperature (TT)-dependent charge excitations across the Verwey transition at TVT_V=122 K, which is missing in the surface-sensitive spectra. An extended impurity Anderson model full-multiplet analysis reveals roles of the three distinct Fe-species (A-Fe3+^{3+}, B-Fe2+^{2+}, B-Fe3+^{3+}) below TVT_V for the Fe 2p2p spectra, and its TT-dependent evolution. The Fe 2p2p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the magnetically distinct sites associated with the charge excitations. Valence band HAXPES shows finite density of states at EFE_F for the polaronic metal with remnant order above TVT_V, and a clear gap formation below TVT_V. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-Fe2+^{2+} and B-Fe3+^{3+} electronic states, consistent with resistivity and bulk-sensitive optical spectra.Comment: 5 pages, 4 figures Accepted in Physical Review Letter

    Evidence for a correlated insulator to antiferromagnetic metal transition in CrN

    Full text link
    We investigate the electronic structure of Chromium Nitride (CrN) across the first-order magneto-structural transition at T_N ~ 286 K. Resonant photoemission spectroscopy shows a gap in the 3d partial density of states at the Fermi level and an On-site Coulomb energy U ~ 4.5 eV, indicating strong electron-electron correlations. Bulk-sensitive high resolution (6 meV) laser photoemission reveals a clear Fermi edge indicating an antiferromagnetic metal below T_N. Hard x-ray Cr 2p core-level spectra show T-dependent changes across T_N which originate from screening due to coherent states as substantiated by cluster model calculations using the experimentally observed U. The electrical resistivity confirms an insulator above T_N (E_g ~ 70 meV) which becomes a disordered metal below T_N. The results indicate CrN transforms from a correlated insulator to an antiferromagnetic metal, coupled to the magneto-structural transition.Comment: Submitted to Physical Review Letters (February 2010) 11 pages, 3 figures in the main text, 1 Supplementary Informatio

    Whole-genome sequencing of Theileria parva strains provides insight into parasite migration and diversification in the african continent

    Get PDF
    The disease caused by the apicomplexan protozoan parasite Theileria parva, known as East Coast fever or Corridor disease, is one of the most serious cattle diseases in Eastern, Central, and Southern Africa. We performed whole-genome sequencing of nine T. parva strains, including one of the vaccine strains (Kiambu 5), field isolates from Zambia, Uganda, Tanzania, or Rwanda, and two buffalo-derived strains. Comparison with the reference Muguga genome sequence revealed 34 814–121 545 single nucleotide polymorphisms (SNPs) that were more abundant in buffalo-derived strains. High-resolution phylogenetic trees were constructed with selected informative SNPs that allowed the investigation of possible complex recombination events among ancestors of the extant strains. We further analysed the dN/dS ratio (non-synonymous substitutions per non-synonymous site divided by synonymous substitutions per synonymous site) for 4011 coding genes to estimate potential selective pressure. Genes under possible positive selection were identified that may, in turn, assist in the identification of immunogenic proteins or vaccine candidates. This study elucidated the phylogeny of T. parva strains based on genome-wide SNPs analysis with prediction of possible past recombination events, providing insight into the migration, diversification, and evolution of this parasite species in the African continent
    corecore