9 research outputs found
Recommended from our members
Recent Results From a Si/CdTe Semiconductor Compton Telescope
We are developing a Compton telescope based on high resolution Si and CdTe detectors for astrophysical observations in sub-MeV/MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma-rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9{sup o} (FWHM) at 511 keV, and the energy resolution is 14 keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating {sup 137}Cs source, we successfully obtained an image and a spectrum of 662 keV line emission with this method. As a next step, development of larger double-sided Si strip detectors with a size of 4 cm x 4 cm is underway to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well
Hard X-ray Detector (HXD) on Board Suzaku
The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from
10 keV to 600 keV by combination of silicon PIN diodes and GSO scintillators.
The HXD is designed to achieve an extremely low in-orbit back ground based on a
combination of new techniques, including the concept of well-type active shield
counter. With an effective area of 142 cm^2 at 20 keV and 273 cm2 at 150 keV,
the background level at the sea level reached ~1x10^{-5} cts s^{-1} cm^{-2}
keV^{-1} at 30 keV for the PI N diodes, and ~2x10^{-5} cts s^{-1} cm^{-2}
keV^{-1} at 100 keV, and ~7x10^{-6} cts s^{-1} cm^{-2} keV^{-1} at 200 keV for
the phoswich counter. Tight active shielding of the HXD results in a large
array of guard counters surrounding the main detector parts. These
anti-coincidence counters, made of ~4 cm thick BGO crystals, have a large
effective area for sub-MeV to MeV gamma-rays. They work as an excellent
gamma-ray burst monitor with limited angular resolution (~5 degree). The
on-board signal-processing system and the data transmitted to the ground are
also described.Comment: 35 pages, 25 figures and 4 tables; acceted for Publication of the
Astronomical Society of Japa
Glycan labeling strategies and their use in identification and quantification
Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed
Capillary Electrophoresis For Total Glycosaminoglycan Analysis
A capillary zone electrophoresis-laser-induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan, and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline separated in less then 25 min. This CZE-LIF method gave good reproducibility for both migration time (a parts per thousand currency sign1.03 % for intraday and a parts per thousand currency sign4.4 % for interday) and the peak area values (a parts per thousand currency sign5.6 % for intra- and a parts per thousand currency sign8.69 % for interday). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results show that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run.Wo