1,620 research outputs found

    Dynamics of Binary Mixtures with Ions: Dynamic Structure Factor and Mesophase Formation

    Get PDF
    Dynamic equations are presented for polar binary mixtures containing ions in the presence of the preferential solvation. In one-phase states, we calculate the dynamic structure factor of the composition accounting for the ion motions. Microphase separation can take place for sufficiently large solvation asymmetry of the cations and the anions. We show two-dimensional simulation results of the mesophase formation with an antagonistic salt, where the cations are hydrophilic and the anions are hydrophobic. The structure factor S(q) in the resultant mesophase has a sharp peak at an intermediate wave number on the order of the Debye-Huckel wave number. As the quench depth is increased, the surface tension nearly vanishes in mesophases due to an electric double layer.Comment: 24 pages, 10 figures, to appear in Journal of Physics: Condensed Matte

    Magnetic properties of PrCu2_2 at high pressure

    Full text link
    We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu2_2, by means of molecular-field calculations and 63,65^{63,65}Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induced magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the 4f4f electron orbitals of the Pr3+^{3+} ions and by introducing a pressure-dependent exchange interaction between the corresponding local magnetic moments. Our experimental data suggest that the order in the induced antiferromagnetic phase is incommensurate. The role of magnetic fluctuations both at high and low pressures is also discussed.Comment: 7 pages, 6 figures, submitted to Eur. Phys. J.

    Spatio-Temporal and Multisensory Integration: the relationship between sleep and the cerebellum

    Get PDF
    Does the cerebellum sleep? If so, does sleep contribute to cerebellar cognition? In this thesis, the sleep contribution to the consolidation process of spatial-temporal and multisensory integration was investigated in relation to the human cerebellum. Multiple experimental approaches were used to answer research questions addressed in the various chapters. Summarizing the evidence of the electrophysiology and neuroimaging studies, in Chapter1 we present intriguing evidence that the cerebellum is involved in sleep physiology, and that cerebellar-dependent memory formation can be consolidated during sleep. In Chapter 2, using functional neuroimaging in healthy participants during various forms of the Serial interception sequential learning (SISL) task, i.e., predictive timing, motor coordination, and motor imagination, we assessed the cerebellar involvement in spatio-temporal predictive timing; and possible cerebellar interactions with other regions, most notably the hippocampus. In Chapter 3, we add to the findings of Chapter 2 that indicate the cerebellum and hippocampus are involved in the task, by showing that more than simply activated, the cerebellum is a necessary and responsible region for the establishment of the spatio-temporal prediction. This follows from the deficits in behavioral properties of the predictive and reactive timing in the cerebellar ataxia type 6 patients, using the modified version of the SISL task. In Chapter 4, we assessed the subsequent post-interval behavioral performances on the learning of the fixed and random timing sequences in the SISL task, comparing a sleep group and wake group in healthy participants. Our findings show that sleep consolidates the process of cerebellar-dependent spatio-temporal integration. In Chapter 5, we investigated the establishment of visual-tactile integration during sleep through the examination of tactile motion stimulation during sleep and showed that, subsequent to sleep, directional visual motion discrimination i

    Strong Coupling between Antiferromagnetic and Superconducting Order Parameters in CeRhIn5_5 Studied by In-NQR Spectroscopy

    Full text link
    We report on a novel pressure (PP)-induced evolution of magnetism and superconductivity (SC) in a helical magnet CeRhIn5_5 with an incommensurate wave vector Qi=(1/2,1/2,0.297)Q_i=({1/2},{1/2},0.297) through the 115^{115}In nuclear quadrupole resonance (NQR) measurements under PP. Systematic measurements of the 115^{115}In-NQR spectrum reveal that the commensurate antiferromagnetism (AFM) with Qc=(1/2,1/2,1/2)Q_c=({1/2},{1/2},{1/2}) is realized above PmP_m \sim 1.7 GPa. An important finding is that the size of SC gap and TcT_c increase as the magnitude of the AFM moment decreases in the PP region, where SC uniformly coexists with the commensurate AFM. This result provides evidence of strong coupling between the commensurate AFM order parameter (OP) and SC OP.Comment: 5 pages, 5 figure

    Anomalous quasiparticle transport in the superconducting state of CeCoIn5

    Full text link
    We report on a study of thermal Hall conductivity k_xy in the superconducting state of CeCoIn_5. The scaling relation and the density of states of the delocalized quasiparticles, both obtained from k_xy, are consistent with d-wave superconducting symmetry. The onset of superconductivity is accompanied by a steep increase in the thermal Hall angle, pointing to a striking enhancement in the quasiparticle mean free path. This enhancement is drastically suppressed in a very weak magnetic field. These results highlight that CeCoIn_5 is unique among superconductors. A small Fermi energy, a large superconducting gap, a short coherence length, and a long mean free path all indicate that CeCoIn_5 is clearly in the superclean regime (E_F/Delta<<l/xi), in which peculiar vortex state is expected.Comment: 5 pages, 5 figure

    Superconducting Gap Function in Antiferromagnetic Heavy-Fermion UPd_2Al_3 Probed by Angle Resolved Magnetothermal Transport Measurements

    Full text link
    The superconducting gap structure of heavy fermion UPd_2Al_3, in which unconventional superconductivity coexists with antiferromagnetic (AF) order with atomic size local moments, was investigated by the thermal conductivity measurements in a magnetic field rotating in various directions relative to the crystal axes. The results provide strong evidence that the gap function \Delta(k) has a single line node orthogonal to the c-axis located at the AF Brillouin zone boundary, while \Delta(k) is isotropic within the basal plane. The determined nodal structure is compatible with the resonance peak in the dynamical susceptibility observed in neutron inelastic scattering experiments. Based on these results, we conclude that the superconducting pairing function of UPd_2Al_3 is most likely to be d-wave with a form \Delta(k)=\Delta_0 cos(k_zc)Comment: 10 pages, 9 figure

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja

    Probing the extended non-Fermi liquid regimes of MnSi and Fe

    Full text link
    Recent studies show that the non-Fermi liquid (NFL) behavior of MnSi and Fe spans over an unexpectedly broad pressure range, between the critical pressure p_c and around 2p_c. In order to determine the extension of their NFL regions, we analyze the evolution of the resistivity rho(T) A(p)T^n at higher pressures. We find that in MnSi the n=3/2 exponent holds below 4.8 GPa=3 p_c, but it increases above that pressure. At 7.2 GPa we observe the low temperature Fermi liquid exponent n=2 whereas for T>1.5 K, n=5/3. Our measurements in Fe show that the NFL behavior rho T^{5/3} extends at least up to 30.5 GPa, above the entire superconducting (SC) region. In the studied pressure range, the onset of the SC transition reduces by a factor 10 down to T_c^onset(30.5 GPa)=0.23 K, while the A-coefficient diminishes monotonically by around 50%.Comment: 2 pages, 2 figures, Proceedings SCES 200
    corecore