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Abstract
Dynamic equations are presented for polar binary mixtures containing ions in the presence of
preferential solvation. In one-phase states, we calculate the dynamic structure factor of the
composition accounting for ion motion. Microphase separation can take place for sufficiently
large solvation asymmetry of the cations and the anions. We show two-dimensional simulation
results of the mesophase formation with an antagonistic salt, where the cations are hydrophilic
and the anions are hydrophobic. The structure factor S(q) in the resultant mesophase has a
sharp peak at an intermediate wavenumber of the order of the Debye–Hückel wavenumber. As
the quench depth is increased, the surface tension nearly vanishes in mesophases due to an
electric double layer.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Much attention has been paid to the phase transition
behavior arising from the Coulomb interaction among charged
particles in various soft materials including electrolytes,
polyelectrolytes, and gels [1–3]. However, in most of
the theoretical literature, the ion–dipole interaction has not
been explicitly considered, which gives rise to a complex
structure around each ion, called the solvation (hydration)
shell, composed of several solvent molecules (those of the
more polar component in a mixture solvent) [4]. The resultant
solvation chemical potential μ

j
sol depends on the ion species

j and typically exceeds the thermal energy T . It should also
strongly depend on the composition for binary mixtures and
the polymer volume fraction for polymer solutions, so it cannot
be neglected at phase transitions and around composition
heterogeneities. Recently, including the preferential solvation
effect, several theoretical groups have begun to investigate
the ion effects in electrolytes [5–9], polyelectrolytes [10], and
ionic surfactants [11].

We mention some experiments directly related to our
theory. First, many authors have long observed salt-induced
phase separation or homogeneization in aqueous binary
mixtures, where the phase behavior is strongly altered even by
a small amount of a salt [12]. Second, we mention a number of
observations of salt-induced aggregates in near-critical binary

mixtures [13–15], where the cations and anions are both
hydrophilic. In one-phase states [13, 14], heterogeneities
extending over a few micrometers have been detected by light
scattering with addition of a salt (for example, 17 mass%
NaBr in mixtures of H2O + 3-methylpyridine (3MP) [14]).
In a two-phase state [15], a macroscopic thin plate has
been observed at a liquid–liquid interface, which presumably
consists of aggregates of solvated ions. Third, we mention
recent small-angle neutron scattering experiments by Sadakane
et al [16, 17]. They added sodium tetraphenylborate NaBPh4

at 100 mM to a mixture of D2O and 3MP to find a peak at an
intermediate wavenumber qm (∼0.1 Å

−1
). The peak height of

the SANS intensity was much enhanced with the formation of
periodic structures. Their salt is composed of hydrophilic Na+
and hydrophobic BPh−

4 . Furthermore, the mixture exhibited
colors changing dramatically on approaching the criticality at
low salt content (∼10 mM).

Hydrophilic and hydrophobic ions interact differently with
the composition fluctuations in mixtures of water + less-polar
component. They behave antagonistically in the presence of
the composition fluctuations. We may predict the formation of
a large electric double layer at liquid–liquid interfaces much
reducing the surface tension and formation of mesophases for
sufficiently large solvation asymmetry [5, 6]. However, we do
not know the details of the phase transition of binary mixtures
with an antagonistic salt. Originally, Nabutovskii et al
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[18] pointed out the possibility of mesophases in electrolytes
assuming a coupling between the composition and the charge
density in the free energy.

In section 2, we will present a short summary of the
statics of binary mixtures containing ions accounting for the
preferential solvation. In section 3, dynamic equations for
such systems will be given and, as an application, the dynamic
scattering amplitude will be calculated. In section 4, we will
then numerically examine the mesophase formation induced by
antagonistic ion pairs.

2. Ginzburg–Landau free energy

2.1. Electrostatic and solvation interactions

We consider a polar binary mixture containing a small amount
of salt. The composition of a water-like component is written
as φ. The cation and anion densities are written as n1 and n2

with charges Z1e and Z2e. In the monovalent case we have
Z1 = 1 and Z2 = −1. They are sufficiently dilute and their
volume fraction is negligible. The charge density is given by
e(Z1n1 + Z2n2). The variables φ, n1, and n2 vary smoothly
in space. The Boltzmann constant will be set equal to unity.
As the geometry of our system, our fluid is between parallel
metallic plates in the region 0 < z < L. The lateral dimensions
in the xy plane are much larger than L. The surface charges
on the plates can give rise to an applied electric field. In the
following theory, we fix the charges on the plates such that
their electrostatic energy is kept fixed [19].

The Ginzburg–Landau free energy functional of our
system is written as F = ∫

dr f with the free energy
density [5, 6],

f = f0(φ, T ) + T C

2
|∇φ|2 + εE2

8π

+ T
∑

j

[ln(n jv0) − 1 − g jφ]n j . (2.1)

The first two terms constitute the usual Ginzburg–Landau free
energy density. The chemical part f0 = f0(φ, T ) depends on φ

and T and the coefficient C of the gradient term is of the order
a2−d in d dimensions, where a is the molecular radius. The
third term is the electrostatic free energy, where E = −∇� is
the electric field and the electrostatic potential � satisfies the
Poisson equation

− ∇ · ε(φ)∇� = 4πe(Z1n1 + Z2n2). (2.2)

The dielectric constant ε(φ) can depend on the composition φ.
In our previous work the linear composition dependence

ε(φ) = ε0 + ε1φ (2.3)

has been assumed, where ε0 is the dielectric constant of the
less-polar component and ε0 + ε1 is that of the water-like
component. In such cases ε0 > 0 and ε1 > 0. This linear form
approximately holds in some polar binary mixtures [20]. The
last term in (2.1) consists of the entropic part and the solvation
contribution of the ions, where the parameters g j represent the
solvation strength. The choice of the volume v0 is arbitrary

and is taken to be the solvent molecular volume (see (5.1)
below). In this work we neglect the image interaction arising
from inhomogeneous dielectric constant or from nonvanishing
ε1 in our theory [5, 6, 21]. The interfacial ion distribution is
then produced by the preferential solvation among the ions and
the mixture solvent. The image interaction is weakened with
increasing the salt density and/or approaching the critical point.

With (2.1) we may calculate the chemical potentials h =
δF/δφ and μ j = δF/δn j . They are written as

h

T
= f ′

0

T
− C∇2φ − ε1E

2

8πT
−

∑

j

g j n j , (2.4)

μ j

T
= ln(n jv0) − g jφ + 1

T
Z j e�, (2.5)

where f ′
0 = ∂ f0(φ)/∂φ and ε1 = ∂ε/∂φ. If the system is in

equilibrium, h, μ1, and μ2 are homogeneous constants. When
the system undergoes a macroscopic phase separation with a
planar interface separating polar and less-polar regions, we
may calculate the interface profiles of the composition and the
ions [6]. In equilibrium the composition difference �φ and the
potential difference �� satisfy

e�� = T (g1 − g2)�φ/(Z1 + |Z2|), (2.6)

from the charge neutrality in the bulk regions. The ��

is called the Galvani potential difference in electrochem-
istry [22, 23].

The solvation free energy may be written as fsol =∑
j μ

j
sol(φ)n j , where μ

j
sol(φ) is the solvation chemical

potential of the ion species j . It is assumed to depend on φ

as
μ

j
sol(φ) = μ

j
sol(0) − T g jφ. (2.7)

Here the first term in the right-hand side gives a
contribution linear in n j in fsol and is not written in f in (2.1),
while the second term yields the solvation coupling terms
in f between the ions and the composition. We remark on
the magnitude of g j . In aqueous mixtures, it is positive for
hydrophilic ions and negative for hydrophobic ions. In two-
phase coexistence, the difference of the solvation chemical
potential between the two phases is given by �μ

j
sol = T g j�φ,

which is identical to the standard Gibbs transfer free energy
(per particle) in electrochemistry [22, 23]. Data of �μ

j
sol

are available for water-nitrobenzene at room temperatures in
strong segregation (where �φ ∼= 1). For example, �μ

j
sol/T =

g j�φ = 13.6 for Na+, 15.3 for Li+, 26.9 for Ca2+, 11.3
for Br−, and 7.46 for I− as examples of hydrophilic ions,
while it is −14.4 for BPh−

4 (tetraphenylborate) as an example
of hydrophobic ions. The anion BPh−

4 consists of four
phenyl rings bonded to an ionized boron, acquiring strong
hydrophobicity. Note that Sadakane et al [16, 17] used
NaBPh4. Thus the preferential solvation effect can be very
strong. However, it has mostly been neglected in theories
of electrolytes and soft matters, though it strongly influences
phase transitions in such systems.

When phase separation occurs macroscopically, a liquid–
liquid interface appears. If the space dependence is along the z
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axis, the surface tension is expressed as [10]

γ = 2
∫

dz ( fg − fel), (2.8)

where fg = C|∇φ|2/2 is the gradient free energy density and
fel = εE2/8π is the electrostatic free energy density. Up
to linear order in the ion densities, we may also derive the
expression,

γ ∼= γ0 − T 
 + γel, (2.9)

where γ0 is the surface tension without ions, 
 is the surface
adsorption of ions, and γel is the electrostatic contribution
given by γel = − ∫

dz fel < 0. For antagonistic salts with
large |gi |, |γel| is much amplified due to the electric double
layer at the interface.

2.2. Structure factor in one-phase states

In our previous papers [5, 6], we examined the structure
factor S(q) = 〈|φq|2〉 of the composition fluctuations with
wavenumber q = |q| in one-phase states with salt, where
φq is the Fourier component of the composition deviation
δφ(r) = φ(r) − 〈φ〉 with wavevector q. Hereafter 〈· · ·〉
denotes the thermal average. We readily obtain S(q) if the
fluctuation contributions to F are calculated in the bilinear
order. The resultant free energy part is written as δF . The
thermal fluctuations obey the Gaussian distribution ∝e−δF/T

in equilibrium in the mean-field theory. Hereafter we consider
the monovalent case Z1 = −Z2 = 1, where the average ion
densities are written as 〈n1〉 = 〈n2〉 = ne.

From (2.1) some calculations give

δF = T

2

∑

q

[

(r̄ + Cq2)|φq|2 + 4π�B

q2
|ρq|2

]

+ T
∑

q

∑

j

[
1

2ne
|n jq|2 − g j n jqφ

∗
q

]

, (2.10)

where n jq and ρq are the Fourier components of n j (r) and
ρ(r) ≡ n1(r) − n2(r), respectively, and �B = e2/εT is the
Bjerrum length. We define

r̄ = ∂2 f0(φ)/∂φ2. (2.11)

The average composition 〈φ〉 is simply written as φ. Here
we may treat ε as a constant when we treat the small thermal
fluctuations. By minimizing δF with respect to n jq at fixed φq ,
we obtain δF/T = ∑

q |φq|2/2S(q) with

1

S(q)
= r̄ − (g1 + g2)

2 ne

2
+ Cq2

[

1 − γ 2
pκ2

κ2 + q2

]

, (2.12)

where κ = (8π�Bne)
1/2 is the Debye wavenumber and the

parameter
γp = (16πC�B)−1/2|g1 − g2| (2.13)

represents asymmetry of the solvation of the two ion species.
The structure factor thus obtained is analogous to that for
weakly charged polyelectrolytes [10, 24, 25].

The second term in the right-hand side of (2.12) gives rise
to a shift of the spinodal curve [12]. For example, if the cations

and anions are hydrophilic and g1 ∼ g2 ∼ 15, the shift term
is of order −500ne and its magnitude can be appreciable even
for v0ne 
 1. On the other hand, γp can be increased for
antagonistic salts composed of hydrophilic and hydrophobic
ions [5, 6, 16, 17]. From the last term in (2.12) a Lifshitz point
appears at γp = 1. For γp > 1, S(q) exhibits a peak at an
intermediate wavenumber qm . Since the derivative of the right-
hand side of (2.12) with respect to q2 vanishes at q = qm , we
find

qm = (γp − 1)1/2κ. (2.14)

The peak height is given by S(qm) = 1/(r̄ − rm), where

rm = (g1 + g2)
2 ne

2
+ C(γp − 1)2κ2. (2.15)

For r̄ < rm , mesophase formation takes place, as will be
studied in section 4.

3. Dynamics

3.1. Dynamic equations for composition, ions, and velocity

We present the dynamic equations for φ, n1, n2, and the
velocity field v [26]. The fluid is assumed to be incompressible
and isothermal. That is, we require

∇ · v = 0 (3.1)

and treat the mass density ρ0 and the temperature T as
constants. Then φ and n j obey

∂φ

∂ t
+ ∇ · (φv) = L0∇2 h

T
, (3.2)

∂n j

∂ t
+ ∇ · (n jv) = D j∇ · n j∇ μ j

T

= D j∇ ·
[

∇n j − Z j e

T
n jE − g jn j∇φ

]

, (3.3)

where h and μ j are given in (2.4) and (2.5), L0 is the kinetic
coefficient (with L0/v0 representing a diffusion constant), and
D1 and D2 are the ion diffusion constants in the solvent. The
momentum equation is expressed as

ρ0
∂v

∂ t
= −∇ p1 − ∇ · ↔

Π + η0∇2v, (3.4)

The first term on the right-hand side ensures the
incompressibility condition (3.1) and p1 satisfies

∇2 p1 = −
∑

αβ

∇α∇β�αβ, (3.5)

where ∇α = ∂/∂xα with xα = x, y, z. We introduce the

reversible stress tensor
↔
Π = {�αβ} (α, β = x, y, z) in the

form,

�αβ = T C∇αφ∇βφ − ε

4π
Eα Eβ (3.6)

where the first term is well known in critical dynamics [26] and
the second term is a part of the Maxwell stress tensor (with its
diagonal part being included in p1) [27].

3
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We determine
↔
Π from the relation,

∇ · ↔
Π = φ∇h +

∑

j

n j∇μ j . (3.7)

If the above relation holds, the total free energy FT =∫
dr [ f + ρ0v

2/2] including the fluid kinetic energy changes
in time as

d

dt
FT = −

∫
dr [ε̇φ + ε̇vis + ε̇ion], (3.8)

where the terms in the brackets are the heat production rates in
the bulk given by

ε̇φ = L0|∇h|2, ε̇vis = η0

∑

αβ

|∇αvβ |2,

ε̇ion =
∑

j

D j n j |∇μ j |2/T .
(3.9)

The surface terms are omitted in (3.8). Owing to
dFT/dt � 0, the system tends to equilibrium if there is no
externally applied flow.

In our dynamic equations we neglect the random source
terms [26], which are related to the transport coefficients L0,
D j , and η0 via the fluctuation–dissipation relations. They are
needed to describe the dynamics of the thermal fluctuations and
to calculate the time-correlation functions.

3.2. Stokes approximation

Without macroscopic flow, the viscous motion of v is much
faster than the diffusive motions of φ and n j . Here L0/v0, D1,
and D2 are estimated by the Stokes formula (D j ∼ T/6πη0a j

with a j being the molecular size), so they are much smaller
than the kinematic viscosity η0/ρ0. Then we may well neglect
the acceleration of the velocity in (3.4) to obtain [26]

vα(r) =
∫

dr′ ∑

β

Tαβ(r − r′)Xβ(r′) (3.10)

where Xα(r) = − ∑
β ∇β�αβ(r) is the force density acting

on the fluid and Tαβ(r) is the Oseen tensor. This Stokes
approximation has been used in numerical analysis of spinodal
decomposition in the literature [28]. The free energy F =∫

dr f changes in time as dF/dt = − ∫
dr [ε̇φ+ε̇vis+ε̇ion] � 0

as in (3.8), where ε̇vis is replaced by

ε̇vis =
∑

α

Xαvα. (3.11)

Here
∫

dr ε̇vis � 0 from the expression (3.10).

3.3. Ionic local equilibrium

The composition evolution can be much slower than the ionic
motions particularly near the critical point. In such cases, the
ion distributions are expressed in terms of φ and � as

n j = n0
j exp(g jφ − Z j e�/T ), (3.12)

where the coefficient n0
j is determined from the conservation

of the ions
∫

dr n j (r, t) = const. In numerical analysis
this approximation is convenient to examine the mesophase
formation for large g j .

4. Relaxation of the thermal composition fluctuations

4.1. Time-correlation function

In this section, we calculate the time-correlation function of the
Fourier components of the composition fluctuations,

G(q, t) = 〈φq(t)φq(0)∗〉, (4.1)

in one-phase states. This function can be measured by dynamic
scattering. It is of interest how it relaxes on approaching the
spinodal point and how it is influenced by the ion diffusion.
The thermal hydrodynamic fluctuations are governed by the
linearized hydrodynamic equations of (3.2) and (3.3) with
random source terms added. That is, they obey linear Langevin
equations [26]. In this section, without explicit introduction
of the noise terms, we will calculate the time-correlation
functions of the form 〈Aq(t)φq(0)∗〉 with t > 0, where A =
φ, n1, and n2. We also assume that the cations and the anions
have the same diffusion constant or D2 = D1, which much
simplifies the calculation.

From (3.3) G(q, t) obeys the linear equation,

[
∂

∂ t
+ 
0(q)

]

G = L0q2

[

g1G1 + g2G2

]

, (4.2)

where G(q, t) is written as G and 
0(q) is the decay rate
without ions,


0(q) = L0q2(r̄ + Cq2). (4.3)

Here we write G1 ≡ 〈n1q(t)φq(0)∗〉 and G2 ≡
〈n2q(t)φq(0)∗〉, where n1q and n2q are the Fourier components
of n1 and n2. The equations for the combinations G1 ±G2 read

[
∂

∂ t
+ D1q2

]

(G1 + G2) = ne(g1 + g2)D1q2G, (4.4)

[
∂

∂ t
+ D1(q

2 + κ2)

]

(G1 − G2) = ne(g1 − g2)D1q2G. (4.5)

Use has been made of the fact that the Fourier component
of the electric potential is �q = 4πe(n1q − n2q)/εq2 from the
Poisson equation (2.2), where the dielectric constant ε may be
treated as a constant. The convective terms in (3.2) and (3.3)
vanish in the linear order without velocity gradient.

It is convenient to calculate the Laplace transformation

Ĝ(q,�) =
∫ ∞

0
dt e−�t G(q, t). (4.6)

The Fourier transformation I (q, ω)= ∫ ∞
−∞ dt e−iωt G(q, t)

is related to Ĝ(q,�) by

I (q, ω) = 2 Re[Ĝ(q, iω)], (4.7)

where Re[· · ·] denotes taking the real part. Some calculations
give the following expression,

Ĝ(q,�) = S(q)

[

� + L0q2/S(q)

1 + Z(q,�)

]−1

. (4.8)

4
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The ionic correction Z(q,�)(∝ne) depends on q and �

as

Z(q,�) = 1

2
ne L0q2

[
(g1 + g2)

2

� + D1q2

+ (g1 − g2)
2q2

[� + D1(q2 + κ2)](q2 + κ2)

]

. (4.9)

In deriving (4.8) and (4.9) use has also been made of the
static relations,

〈(n1q + n2q)φ
∗
q〉 = ne(g1 + g2)S(q),

(1 + κ2/q2)〈(n1q − n2q)φ
∗
q〉 = ne(g1 − g2)S(q),

(4.10)

which follow from (2.10). These equal-time-correlation
functions appear in the Laplace transformation of S(q, t) in the
presence of the random source terms. The presence of Z(q,�)

in (4.8) makes the relaxation of G(q, t) complicated.

4.2. Relaxation near the spinodal point

We obtain the exponential relaxation,

G(q, t) ∼= S(q)e−
(q)t , (4.11)

near the spinodal point. Here the decay rate 
(q) is assumed
to be much smaller than D1q2. Then we may set � = 0 in
Z(q,�) to find


(q) ∼= L0q2/S(q)

1 + ne B(q)
, (4.12)

where B(q) = Z(q, 0)/ne is written as

B(q) = L0

D1

[
(g1 + g2)

2

2
+ (g1 − g2)

2q4

2(q2 + κ2)2

]

. (4.13)

If |g1| and |g2| are very large, the ionic correction ne B(q)

can be noticeable even for v0ne 
 1. For γp > 1, 
(q) tends
to zero first at q = qm on approaching the spinodal point.

4.3. Long wavelength limit

In dynamic light scattering experiments, we should consider
the long wavelength limit, where we set q 
 κ , 
0(q) ∼=
Dφq2, and Z(q,�) ∼= αD1q2/(� + D1q2) with

Dφ = L0r̄ , (4.14)

α = L0(g1 + g2)
2ne/2D1. (4.15)

Here Dφ = limq→0 
(q)/q2 is the diffusion constant of
the composition in the long wavelength limit without ions. The
dimensionless parameter α is proportional to ne and increases
steeply with increasing ne for g1 + g2 � 1. In dynamic light
scattering without ions, Dφ tends to zero near the critical point
(being given by the Kawasaki formula T/6πη0ξ with ξ being
the correlation length) [26]. In this limit we obtain

Ĝ(q,�)

S(q)
= � + (1 + α)D1q2

�2 + Dq2� + D1 Dφq4

= β

� + D−q2
+ 1 − β

� + D+q2
, (4.16)

where D = (1 + α)D1 + Dφ in the first line. The two new
diffusion constants D− and D+ in the second line are expressed
as

D± = D
2

± 1

2

√
D2 − 4Dφ D1. (4.17)

The partition coefficient β is of the form

β = 1

2
+ (1 + α)D1 − Dφ

2(D+ − D−)
. (4.18)

The inverse Laplace transformation of the second line
of (4.15) yields the time-correlation function exhibiting a
double-exponential decay,

G(q, t)

S(q)
= βe−D−q2t + (1 − β)e−D+q2t . (4.19)

(i) For very small ion concentrations there can be the
situation where α 
 1 and D1α 
 Dφ < D1. In this case
we have D− ∼= Dφ and D+ ∼= D1 with β = 1 − αDφ/(D1 −
Dφ)2 + · · ·. (ii) We may suppose the case Ds 
 D1α. In
this case we have D− ∼= Dφ/(1 + α), D+ ∼= D1(1 + α), with
β = 1 − [(2α − 1)/2(1 + α)2]Dφ/D1 + · · ·.

5. Simulations at the critical composition

We numerically examine phase ordering with a strongly
antagonistic salt at the critical composition 〈φ〉 = 1/2.
The spatial dimensionality d has been equal to three so far.
However, we here present preliminary simulation results in two
dimensions.

5.1. Numerical method

In our simulation, we choose the chemical free energy density
f0 in (2.1) in the Bragg–Williams form,

v0

T
f0 = φ ln φ + (1 − φ) ln(1 − φ) + χφ(1 − φ), (5.1)

where v0 = ad is the solvent molecular volume and χ is the
interaction parameter dependent on T . The parameter r̄ in (2.9)
is given by r̄ = [1/φ(1 − φ) − 2χ]/v0. Space and time will
be measured in units of a and

t0 = v0a2/L0, (5.2)

where L0 is the kinetic coefficient in (3.2). Integration of the
dynamic equations is performed on a 256 × 256 square lattice,
so the system is in the region 0 < x, y < 256a. Supposing the
monovalent case, we set

v0C = a2, g1 = −g2 = 15,

ε1 = 0, �B = 3a,
η0

T
= 0.16a4

L0
.

(5.3)

Then we obtain γp
∼= 2.44 from (2.11) and mesophases

are realized with increasing χ . These values of g1 and g2 are
realistic in view of the data of the Gibbs transfer free energy,
as discussed below (2.7). The correlation length is defined by
ξ = [Cv0/|4 − 2χ |]1/2, which is equal to a for χ = 2.5.

5
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Figure 1. Characteristic domain size 2π/qm(t)a versus time at the
solvent criticality for v0ne = 0.001, 0.0015, 0.002, and 0.003. The
saturated value of qp(t) nearly coincides with qm in (2.14).

The velocity field v is determined by the Stokes
approximation (3.10) and the ion densities n1 and n2 by
the Poisson–Boltzmann expressions (3.12) (the latter being
justified in the limit D j → ∞). In the dynamic equation (3.2)
for φ we put a random source term to calculate the structure
factor,

∂φ

∂ t
+ ∇ · (φv) = L0∇2 h

T
− ∇ · jR, (5.4)

Here jR is the random diffusion flux characterized by

〈 jRα(r, t) jRβ(r′, t ′)〉 = 2L̃δαβδ(r − r′)δ(t − t ′) (5.5)

where α, β = x, y. The noise strength L̃ should be equal to
the kinetic coefficient L0 to ensure the equilibrium distribution
(∝e−F/T ). In this paper, however, we set L̃ = 10−8 L0 to detect
the composition patterns unambiguously. In one-phase states,
φ remains nonvanishing due to jR, yielding a structure factor
proportional to the mean-field structure factor S(q) in (2.12),
where the proportionality constant is L̃/L0 = 10−8 (not
shown here). In two-phase states, jR serves to trigger phase
ordering, yielding a structure factor composed of the domain
contribution. The same structure factor follows even if we set
jR = 0 in the course of domain growth. It is worth noting that
the random source terms are mostly neglected in the literature
of phase ordering dynamics [26].

In our simulations we start with the initial condition
φ(r, 0) = 1/2 at t = 0. Small disturbances of φ are
subsequently produced by the small random flux jR in (5.4),
which grow into patterns in two-phase states. For g1 = −g2

and 〈φ〉 = 0.5, use of (2.15) yields the linear instability
criterion,

2 − χ < 1
2 Ca2(γp − 1)2κ2, (5.6)

where the right-hand side is 78v0ne from (5.3). Hereafter the
Debye wavenumber is κ = 8.7n1/2

e with ne = 〈n1〉 = 〈n2〉
being the average ion density.

5.2. Mesophase formation in shallow quenching

Here we study the phase ordering at the solvent criticality
χ = 2 and 〈φ〉 = 1/2, where instability occurs for ne >

0. In figure 1, we show the time evolution of a normalized

Figure 2. Steady-state structure factor S(q) of the composition for
v0ne = 0.001,0.002, and 0.003, where the solvent is at the criticality
(χ = 2 and 〈φ〉 = 1/2).

characteristic domain size 2π/aqp(t) for various ne. In terms
of the time-dependent structure factor S(q, t) = 〈|φq(t)|2〉 we
define

qp(t) =
∑

q

q S(q, t)

/∑

q

S(q, t). (5.7)

In this shallow quenching, the random source terms in the
dynamic equations can greatly change the structure factor if
their magnitudes are on the order of the thermal noise.

In figure 1, qp(t) tends to a constant expressed as 9.22n1/2
e

at long times. It nearly coincides with qm = (γp − 1)1/2κ =
10.4n1/2

e in (2.14). In figure 2, the steady-state structure factor
S(q) is given for three ion densities, where all the curves arise
from the domain structure and are not affected by the small
noise term in (5.4). Our S(q) exhibits a sharp peak at q = qm

and a second peak at q = 3qm . The peak height at q = qm is
a constant of order unity nearly independent of ne . This can be
explained as follows. It is known that a domain structure gives
the structure factor of the form S(q) ∼= (�φ)2�d S∗(q�), where
�φ is the composition difference between the two phases, � is
the domain size, and S∗(x) is a scaling function. In our two-
dimensional case, we have �φ ∝ n1/2

e and � ∼ 2π/qm ∝
n−1/2

e , so S(q) ∼ S∗(q�).
In figure 3, we display φ(r, t) and n1(r, t) at t = 3000t0

for v0ne = 0.0005 (left) and 0.0025 (right). In figure 4, we
present cross sections of φ, n1, n2 in the upper panel and
those of the gradient free energy fg = T C|∇φ|2/2 and the
electrostatic energy fe = εE2/8π , and their difference in
the lower panel. These quantities vary mildly without sharp
interfaces as functions of x at fixed y = 64a. We notice that
the difference fg− fe is small. In figure 5, their space averages,
〈 fg〉 = ∫

dr fg/V and 〈 fe〉 = ∫
dr fe/V , are demonstrated

to be nearly the same at long times, where V is the system
volume.

We argue why 〈 fg〉 ∼= 〈 fe〉 holds in steady states in weak
segregation. If the ion density is small at shallow quenching,
the composition is weakly segregated and is composed of the
Fourier components with q = |q| ∼= qm . As in the weak
segregation case of block copolymers [29], the deviation δφ =
φ − 〈φ〉 is expressed as

δφ =
∑

q

Aq eiq·r, (5.8)
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Figure 3. Patterns of φ(r, t) (top) and n1(r, t) (bottom) at
t = 3000t0 for nev0 = 0.0005 (left) and 0.0025 (right) at the solvent
criticality.

Figure 4. Cross sections of φ, v0n1, and v0n2 (top) and those of
fgv0/T , − fev0/T , and ( fg − fe)v0/T (bottom) for nev0 = 0.0025
in the region 100 < x < 180 at y = 64, where the solvent is at the
criticality. Use is made of the data producing the right images in
figure 3.

where the coefficients Aq are sharply peaked at q = qm . With
this form, the space average of fg is written as

〈 fg〉
T

= 1

2V

∑

q

q2|Aq|2

∼= 1
2 Cq2

m〈δφ2〉, (5.9)

Figure 5. Space averages of fgv0/T = v0C|∇φ|2/2 and
fev0/T = v0ε|∇�|2/8πT versus time t for nev0 = 0.0025, where
the solvent is at the criticality.

Figure 6. Characteristic domain size 2π/qm(t)a versus time in deep
quenching with χ = 2.5 and 〈φ〉 = 1/2 for v0ne = 0, 0.0005,
0.0015, and 0.0025.

where 〈δφ2〉 = ∑
q |Aq|2/V . Linearizing (2.2) and (3.12) with

respect to δφ in the monovalent case, we obtain the electric
potential [10],

� = T

2e

∑

q

(g1 − g2)κ
2

q2 + κ2
Aq eiq·r. (5.10)

From (2.13) the average electrostatic energy is written as

〈 fe〉
T

= 1

2V

∑

q

Cγ 2
pκ4q2

(q2 + κ2)2
|Aq|2

∼= Cγ 2
pκ4q2

m

2(q2
m + κ2)2

〈δφ2〉. (5.11)

From qm = (γp − 1)1/2κ in (2.14), we find 〈 fg〉 ∼= 〈 fe〉.

5.3. Mesophase formation in deep quenching

Next we examine the case of deep quenching by setting χ =
2.5 with 〈φ〉 = 0.5, where the interface thickness is ξ = a.
In figure 6, we show the time evolution of the characteristic
domain size 2π/qp(t), where qp(t) is defined by (5.7). For
v0ne = 0.0025 the domain size approaches a constant, while
for v0ne = 0.0015 and 0.0005 its growth still continues in the
simulation but is extremely slow at the end of the simulation

7
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Figure 7. Structure factor S(q) in deep quenching with χ = 2.5 and
〈φ〉 = 1/2 for v0ne = 0, 0.0005, 0.001, 0.0015, and 0.0025. The
numbers in the figure denote nev0.

Figure 8. Patterns of φ(r) (top), n1(r) (middle), and n2(r) (bottom)
in deep quenching at t = 3000t0 for nev0 = 0.000 01 (left) and
0.0025 (right), where χ = 2.5 and 〈φ〉 = 1/2.

(t/t0 = 6000). In figure 7, the structure factor S(q) is shown
for v0ne = 0, 0.0005, 0.0015, and 0.0025. The structure factor
around the peak is of order 100v0 and is much larger than the
thermal level.

In figure 8, we display φ(r, t) and n1(r, t) at t = 3000t0
for v0ne = 0.0005 (left) and 0.0025 (right). As a marked
feature for v0ne = 0.0005, the cations (anions) are confined in
the water-rich (water-poor) regions. Because of the small ion
density here, the ions change discontinuously at the interfaces
and are homogeneously distributed in the preferred domains.
On the other hand, for v0ne = 0.0025, the ions are localized
near the interfaces. In figure 9, we show cross sections of φ, n1,
n2 (top), and those of fg, − fe, and fg − fe (bottom). We can
see electric double layers at the interfaces in accord with the
theory [6]. The difference fg− fe turns out to be small in steady

Figure 9. Cross sections of φ, v0n1, and v0n2 (upper plate) and those
of fgv0/T , − fev0/T , and ( fg − fe)v0/T (lower plate) for
nev0 = 0.0025 in the region 100 < x < 180 at y = 64, where
χ = 2.5 and 〈φ〉 = 1/2. Use is made of the data producing the right
images in figure 8.

Figure 10. Space averages of fgv0/T and fev0/T versus time t for
nev0 = 0.0025, where χ = 2.5 and 〈φ〉 = 1/2.

states. In figure 10, we demonstrate that their space averages
nearly coincide at long times. From (2.8) we recognize that the
surface tension γ nearly vanishes in steady states.

6. Summary and concluding remarks

In this work, we have presented dynamic equations for binary
mixtures containing ions, where the free energy includes the
solvation interactions. (i) As the first application, we have
calculated the dynamic structure factor G(q, t) in (4.1) in one-

8
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phase states accounting for the ion motions. Its relaxation
is slowed down on approaching the spinodal as in (4.12),
which occurs at an intermediate wavenumber qm for γp > 1.
Here γp is the asymmetry parameter of solvation. It also
exhibits a double-exponential relaxation in the long wavelength
limit (in dynamic light scattering) as in (4.19). (ii) As the
second application, we have numerically demonstrated the
emergence of mesophases with the addition of an antagonistic
salt, though our simulations are in two dimensions and at the
critical composition. We have obtained a dramatic increase
of the structure factor S(q) at an intermediate wavenumber
in figures 2 and 7 in accord with the experiment of Sadakane
et al [16, 17]. In these mesophases, the gradient free energy
and long-range electrostatic energy are balanced as in figures 5
and 10. We have found that the surface tension vanishes in the
mesophase in deep quenching.

The present simulation is still very preliminary and more
systematic analysis is needed in future work. In particular,
the phase diagram in the parameter space of χ , 〈φ〉, and ne is
required. While our simulation captures some salient features
of the neutron scattering experiments [16, 17], the calculated
structure factor S(q) cannot be compared with the observed
intensity quantitatively. There are many parameters in our
theory and we cannot judge whether or not our choice in (5.3)
is appropriate for the experimental system. In particular, the
solvation parameters g1 and g2 are not known for mixtures of
D2O and 3MP.

Our simulation suggests that the addition of an
antagonistic salt to a binary mixture can decrease the surface
tension of a macroscopic liquid–liquid interface even to zero.
We may then predict a salt-induced interface instability,
leading to emulsification. We also mention measurements
of the dynamic scattering, the electric conductivity, and
the rheological properties, as new experiments using an
antagonistic salt.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific
Research on Priority Area ‘Soft Matter Physics’ from
the Ministry of Education, Culture, Sports, Science, and
Technology of Japan. Thanks are also given to K Sadakane
and H Seto for informative discussions.

References

[1] Levin Y 2002 Rep. Prog. Phys. 65 1577
[2] Holm C, Joanny J F, Kremer K, Netz R R, Reineker P, Seidel C,

Vilgis T A and Winkler R G 2004 Adv. Polym. Sci. 166 67
[3] Dobrynin A V and Rubinstein M 2005 Prog. Polym. Sci.

30 1049
[4] Israelachvili J N 1991 Intermolecular and Surface Forces

(London: Academic)

[5] Onuki A and Kitamura H 2004 J. Chem. Phys. 121 3143
[6] Onuki A 2006 Phys. Rev. E 73 021506

Onuki A 2008 J. Chem. Phys. 128 224704
Onuki A 2009 Polymer, Liquids and Colloids in Electric Fields:

Interfacial Instabilities, Orientation and Phase-Transitions
ed Y Tsori (Singapore: World Scientific)

[7] Marcus G, Samin S and Tsori Y 2008 J. Chem. Phys.
129 061101

[8] Bier M, Zwanikken J and van Roij R 2008 Phys. Rev. Lett.
101 046104

Zwanikken J, de Graaf J, Bier M and van Roij R 2008 J. Phys.:
Condens. Matter 20 494238

[9] Ben-Yaakov D, Andelman D, Harries D and Podgornik R 2009
J. Phys. Chem. B 10 6001

[10] Onuki A and Okamoto R 2009 J. Phys. Chem. B 113 3988
[11] Onuki A 2008 Europhys. Lett. 82 58002
[12] Eckfeldt E L and Lucasse W W 1943 J. Phys. Chem. 47 164

Hales B J, Bertrand G L and Hepler L G 1966 J. Phys. Chem.
70 3970

Balevicius V and Fuess H 1999 Phys. Chem. Chem. Phys.
1 1507

Misawa M, Yoshida K, Maruyama K, Munemura H and
Hosokawa Y 1999 J. Phys. Chem. Solids 60 1301

[13] Euliss G W and Sorensen C M 1984 J. Chem. Phys. 80 4767
[14] Kostko A F, Anisimov M A and Sengers J V 2004 Phys. Rev. E

70 026118
Wagner M, Stanga O and Schröer W 2004 Phys. Chem. Chem.
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