15,608 research outputs found

    The interaction between the Moon and the solar wind

    Get PDF
    We study the interaction between the Moon and the solar wind using a three-dimensional hybrid plasma solver. The proton fluxes and electromagnetical fields are presented for typical solar wind conditions with different magnetic field directions. We find two different wake structures for an interplanetary magnetic field that is perpendicular to the solar wind flow, and for one that is parallell to the flow. The wake for intermediate magnetic field directions will be a mix of these two extreme conditions. Several features are consistent with a fluid interaction, e.g., the presence of a rarefaction cone, and an increased magnetic field in the wake. There are however several kinetic features of the interaction. We find kinks in the magnetic field at the wake boundary. There are also density and magnetic field variations in the far wake, maybe from an ion beam instability related to the wake refill. The results are compared to observations by the WIND spacecraft during a wake crossing. The model magnetic field and ion velocities are in agreement with the measurements. The density and the electron temperature in the central wake are not as well captured by the model, probably from the lack of electron physics in the hybrid model.Comment: Accepted for publication in Earth, Planets and Spac

    Identifying cross country skiing techniques using power meters in ski poles

    Get PDF
    Power meters are becoming a widely used tool for measuring training and racing effort in cycling, and are now spreading also to other sports. This means that increasing volumes of data can be collected from athletes, with the aim of helping coaches and athletes analyse and understanding training load, racing efforts, technique etc. In this project, we have collaborated with Skisens AB, a company producing handles for cross country ski poles equipped with power meters. We have conducted a pilot study in the use of machine learning techniques on data from Skisens poles to identify which "gear" a skier is using (double poling or gears 2-4 in skating), based only on the sensor data from the ski poles. The dataset for this pilot study contained labelled time-series data from three individual skiers using four different gears recorded in varied locations and varied terrain. We systematically evaluated a number of machine learning techniques based on neural networks with best results obtained by a LSTM network (accuracy of 95% correctly classified strokes), when a subset of data from all three skiers was used for training. As expected, accuracy dropped to 78% when the model was trained on data from only two skiers and tested on the third. To achieve better generalisation to individuals not appearing in the training set more data is required, which is ongoing work.Comment: Presented at the Norwegian Artificial Intelligence Symposium 201

    Some Environmental Policy Implications of Recycling Paper Products in Western Europe

    Get PDF
    We live in a wasteful society, and are becoming increasingly aware of this fact. Our concern for conservation of our natural resources and about the deleterious effects on the environment of disposal of waste products is increasingly reflected in proposed legislation aimed at reducing waste. The preferred technique is recycling of waste products. While laudable in its objectives, a narrow focus on recycling is also limited, and can result in unexpected effects that can at least partially offset the expected benefits. This is particularly true of paper for at least three basic reasons. First, paper is a major component, about 35%, of household waste volume. Second, unlike most waste, paper has a very high energy content. And third, unlike coal or oil, paper is a renewable resource, and in Europe is produced mostly from forests managed on sustainable principles. This report summarizes a forthcoming feasibility study of large-scale paper recycling in Europe which investigated the entire production and disposal process using a "life-cycle" methodology and data base developed at IIASA

    Kinetic modelling of runaway electron avalanches in tokamak plasmas

    Full text link
    Runaway electrons (REs) can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force due to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate REs mainly through knock-on collisions, where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of REs. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3-D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. A bounce-averaged knock-on source term is derived. The generation of REs from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3-D linearized bounce-averaged relativistic electron Fokker-Planck equation, through the calculation of the response of the electron distribution function to a constant parallel electric field. This work shows that the avalanche effect can be important even in non-disruptive scenarios. RE formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons cannot contribute to the RE population. The relative importance of the avalanche mechanism is investigated as a function of the key parameters for RE formation; the plasma temperature and the electric field strength. In agreement with theoretical predictions, the simulations show that in low temperature and E-field knock-on collisions are the dominant source of REs and can play a significant role for RE generation, including in non-disruptive scenarios.Comment: 23 pages, 12 figure

    Role of low-ll component in deformed wave functions near the continuum threshold

    Get PDF
    The structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions. We find that, for the Kπ=0+K^{\pi}=0^{+} states, where KK is the zz-component of the orbital angular momentum, the probability of each multipole components in the deformed wave function is connected between the negative energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This implies that the Kπ=0+K^{\pi}=0^{+} resonant level exists physically unless the l=0l=0 component is inherently large when extrapolated to the well bound region. The dependence of the multipole components on deformation is also discussed

    Depressed clad hollow optical fiber with fundamental LP01 mode cut-off

    No full text
    We propose a depressed clad hollow optical fiber with fundamental (LP01) mode cut-off suitable for high power short-wavelength, especially three-level, fiber laser operation by introducing highly wavelength dependent losses at longer wavelengths. The cut-off characteristic of such fiber structure was investigated. A Yb-doped depressed clad hollow optical fiber laser generating 59.1W of output power at 1046nm with 86% of slope efficiency with respect to the absorbed pump power was realised by placing the LP01 mode cut-off at ~1100nm

    RGB generation by four-wave mixing in small-core holey fibers

    No full text
    We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser by an efficient four-wave mixing process in submicron-sized cores of microstructured holey fibers. A master-oscillator power amplifier (MOPA) source based on Yb-doped fiber is employed to generate 80 ps pulses at 1060 nm wavelength with 32 MHz repetition rate, which are then frequency-doubled in an LBO crystal to generate up to 2 W average power of green light. The green pump is then carefully launched into secondary cores of the cladding of photonic bandgap fibers. These secondary cores with diameters of about 400 to 800 nm act as highly nonlinear waveguides. At the output, we observe strong red and blue sidebands which, together with the remaining green pump light, form a visible white light source of about 360 mW. The generating process is identified as four-wave mixing where phase matching is achieved by birefringence in the secondary cores which arises from non-symmetric deformation during the fiber fabrication. Numerical models of the fiber structure and of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of the white light source due to the damage threshold of silica fibers

    Nuclear pairing reduction due to rotation and blocking

    Get PDF
    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency ω\omega-dependence and seniority (number of unpaired particles) ν\nu-dependence of the pairing gap Δ~\tilde{\Delta} are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that in general Δ~\tilde{\Delta} decreases with increasing ω\omega, but the ω\omega-dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν>2\nu> 2), the pairing gaps keep almost ω\omega-independent. As a function of the seniority ν\nu, the bandhead pairing gaps Δ~(ν,ω=0)\tilde{\Delta}(\nu,\omega=0) decrease slowly with increasing ν\nu. Even for the highest seniority ν\nu bands identified so far, Δ~(ν,ω=0)\tilde{\Delta}(\nu,\omega=0) remains greater than 70% of Δ~(ν=0,ω=0)\tilde{\Delta}(\nu=0,\omega=0).Comment: 15 pages, 5 figure

    High fidelity readout scheme for rare-earth solid state quantum computing

    Full text link
    We propose and analyze a high fidelity readout scheme for a single instance approach to quantum computing in rare-earth-ion-doped crystals. The scheme is based on using different species of qubit and readout ions, and it is shown that by allowing the closest qubit ion to act as a readout buffer, the readout error can be reduced by more than an order of magnitude. The scheme is shown to be robust against certain experimental variations, such as varying detection efficiencies, and we use the scheme to predict the expected quantum fidelity of a CNOT gate in these solid state systems. In addition, we discuss the potential scalability of the protocol to larger qubit systems. The results are based on parameters which we believed are experimentally feasible with current technology, and which can be simultaneously realized.Comment: 7 pages, 5 figure

    On the Entropy of a Family of Random Substitutions

    Full text link
    The generalised random Fibonacci chain is a stochastic extension of the classical Fibonacci substitution and is defined as the rule mapping 010\mapsto 1 and 11i01mi1 \mapsto 1^i01^{m-i} with probability pip_i, where pi0p_i\geq 0 with i=0mpi=1\sum_{i=0}^m p_i=1, and where the random rule is applied each time it acts on a 1. We show that the topological entropy of this object is given by the growth rate of the set of inflated generalised random Fibonacci words.Comment: A more appropriate tile and minor misprints corrected, compared to the previous versio
    corecore