31 research outputs found

    Puerarin Suppresses Invasion and Vascularization of Endometriosis Tissue Stimulated by 17β-Estradiol

    Get PDF
    BACKGROUND: Puerarin, a phytoestrogen with a weak estrogenic effect, binds to estrogen receptors, thereby competing with 17β-estradiol (E2) and producing an anti-estrogenic effect. This study was to investigate whether puerarin could suppress the invasion and vascularization of E2-stimulated endometriotic tissue. METHODOLOGY/PRINCIPAL FINDINGS: The endometriotic stromal cells (ESCs) were successfully established and their invasive ability under different treatments was assessed through a Transwell Assay. Simultaneously, matrix metallopeptidase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were detected by western blotting. Vascularization of endometriotic tissues was observed by chicken chorioallantoic membrane (CAM) assay. The staining of MMP-9, intercellular adhesion molecule 1 (ICAM-1), TIMP-1, and vascular endothelial growth factor (VEGF) in grafted endometriotic tissues was examined using immunohistochemistry analysis. The purity of ESCs in isolated cells was >95%, as determined by the fluoroimmunoassay of vimentin. E2 (10(-8) mol/L) promoted the invasiveness of ESCs by increasing MMP-9 accumulation and decreasing TIMP-1 accumulation. Interestingly, puerarin (10(-9) mol/L) significantly reversed these effects (P<0.01). The CAM assay indicated that puerarin (10(-9) mol/L) also inhibited the angiopoiesis of endometriotic tissue stimulated by the E2 (10(-8) mol/L) treatment (P<0.05). Accordingly, immunohistochemistry showed that the accumulation of MMP-9, ICAM-1, and VEGF was reduced whereas that of TIMP-1 increased in the combination treatment group compared with the E2 treatment group. CONCLUSIONS/SIGNIFICANCE: This study demonstrated that puerarin could suppress the tissue invasion by ESCs and the vascularization of ectopic endometrial tissues stimulated by E2, suggesting that puerarin may be a potential drug for the treatment of endometriosis

    Organoiridium complexes : anticancer agents and catalysts

    Get PDF
    Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar Ir(I) complexes, such as Crabtree's hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl Ir(III) complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d(6) Ir(III) centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C^C-chelating ligands can even stabilize Ir(IV) and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar Ir(I) complexes because of their structural and electronic similarity to Pt(II) anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich Ir(III) anticancer complexes. These complexes with the formula [(Cp(x))Ir(L^L')Z](0/n+) (with Cp* or extended Cp* and L^L' = chelated C^N or N^N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form Ir(III)-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium complexes containing an imine as a monodentate ligand have prooxidant activity, which appears to involve catalytic hydride transfer to oxygen and the generation of hydrogen peroxide in cells. In addition, researchers have designed inert Ir(III) complexes as potent kinase inhibitors. Octahedral cyclometalated Ir(III) complexes not only serve as cell imaging agents, but can also inhibit tumor necrosis factor α, promote DNA oxidation, generate singlet oxygen when photoactivated, and exhibit good anticancer activity. Although relatively unexplored, organoiridium chemistry offers unique features that researchers can exploit to generate novel diagnostic agents and drugs with new mechanisms of action

    Association of melanocortin 1 receptor gene (MC1R) polymorphisms with skin reflectance and freckles in Japanese.

    Get PDF
    Most studies on the genetic basis of human skin pigmentation have focused on people of European ancestry and only a few studies have focused on Asian populations. We investigated the association of skin reflectance and freckling with genetic variants of melanocortin 1 receptor (MC1R) gene in Japanese. DNA samples were obtained from a total of 653 Japanese individuals (ages 19-40 years) residing in Okinawa; skin reflectance was measured using a spectrophotometer and freckling status was determined for each individual. Lightness index (L*) and freckling status were not correlated with age, body mass index or ancestry (Ryukyuan or Main Islanders of Japan). Among the 10 nonsynonymous variants that were identified by direct sequencing of the coding region of MC1R, two variants--R163Q and V92M--with the derived allele frequencies of 78.6 and 5.5%, respectively, were most common. Multiple regression analysis showed that the 163Q allele and the presence of nonsynonymous rare variants (allele frequencies <5%) were significantly associated with an increase in sex-standardized skin lightness (L* of CIELAB (CIE 1976 (L*a*b*) color space)) of the inner upper arm. Relative to the 92V allele, the 92M allele was significantly associated with increased odds of freckling. This is the first study to show an association between the 163Q allele and skin reflectance values; this association indicated that light-toned skin may have been subjected to positive selection in East Asian people

    Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs

    Get PDF
    Leaf traits are frequently measured in ecology to provide a ‘common currency’ for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit mass)—a commonly measured morphological trait inferring shifts between plant growth strategies—did not respond to up to four years of soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient. We found few significant changes in leaf traits when vertebrate herbivores were excluded in the short-term. Leaf nitrogen and potassium concentrations were positively correlated with species turnover, suggesting that interspecific trait variation was a significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus concentration. Climatic conditions and pretreatment soil nutrient levels also accounted for significant amounts of variation in the leaf traits measured. Overall, we find that leaf morphological traits, such as specific leaf area, are not appropriate indicators of plant response to anthropogenic perturbations in grasslands

    Inhibition of inflammatory corneal angiogenesis by TNP-470

    No full text
    corecore