115 research outputs found

    The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use.

    Get PDF
    We describe the Chemical Probes Portal (https://www.chemicalprobes.org/), an expert review-based public resource to empower chemical probe assessment, selection and use. Chemical probes are high-quality small-molecule reagents, often inhibitors, that are important for exploring protein function and biological mechanisms, and for validating targets for drug discovery. The publication, dissemination and use of chemical probes provide an important means to accelerate the functional annotation of proteins, the study of proteins in cell biology, physiology, and disease pathology, and to inform and enable subsequent pioneering drug discovery and development efforts. However, the widespread use of small-molecule compounds that are claimed as chemical probes but are lacking sufficient quality, especially being inadequately selective for the desired target or even broadly promiscuous in behaviour, has resulted in many erroneous conclusions in the biomedical literature. The Chemical Probes Portal was established as a public resource to aid the selection and best-practice use of chemical probes in basic and translational biomedical research. We describe the background, principles and content of the Portal and its technical development, as well as examples of its applications and use. The Chemical Probes Portal is a community resource and we therefore describe how researchers can be involved in its content and development

    'We looked after people better when we were informal' : the 'quasi-formalisation' of Montevideo's waste-pickers

    Get PDF
    This article was written thanks to funding from the Economic and Social Research Council (Grant Code: ES/S011048/1).Drawing on participatory research, this article explores the state formalisation of Uruguayan clasificadores (waste‐pickers). It goes beyond the informal/formal binary, instead proposing the concepts of ‘para‐formality’ to describe economic activity that exists in parallel to regulated and taxed spheres, and ‘quasi‐formality’ to describe processes of formalisation that are supported by underlying informal practices. When unregulated, clasificadores enjoyed parallel services in health, finance and social security, implying that benefits of ‘formalisation’ must be explored ethnographically rather than assumed. The persistence of ‘quasi‐formal’ activity within formalised recycling plants complicates simple narratives of informal to formal transitions and suggests that the concept can be useful for the study of labour policies in Latin America and beyondPublisher PDFPeer reviewe

    Identification and characterization of 27 conserved microRNAs in citrus

    Get PDF
    MicroRNAs (miRNAs) are a class of non-protein-coding small RNAs. Considering the conservation of many miRNA genes in different plant genomes, the identification of miRNAs from non-model organisms is both practicable and instrumental in addressing miRNA-guided gene regulation. Citrus is an important staple fruit tree, and publicly available expressed sequence tag (EST) database for citrus are increasing. However, until now, little has been known about miRNA in citrus. In this study, 27 known miRNAs from Arabidopsis were searched against citrus EST databases for miRNA precursors, of which 13 searched precursor sequences could form fold-back structures similar with those of Arabidopsis. The ubiquitous expression of those 13 citrus microRNAs and other 13 potential citrus miRNAs could be detected in citrus leaf, young shoot, flower, fruit and root by northern blotting, and some of them showed differential expression in different tissues. Based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences, a total of 41 potential targets were identified for 15 citrus miRNAs. The majority of the targets are transcription factors that play important roles in citrus development, including leaf, shoot, and root development. Additionally, some other target genes appear to play roles in diverse physiological processes. Four target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. Overall, this study in the identification and characterization of miRNAs in citrus can initiate further study on citrus miRNA regulation mechanisms, and it can help us to know more about the important roles of miRNAs in citrus

    MicroRNA Transcriptomic Analysis of Heterosis during Maize Seed Germination

    Get PDF
    Heterosis has been utilized widely in the breeding of maize and other crops, and plays an important role in increasing yield, improving quality and enhancing stresses resistance, but the molecular mechanism responsible for heterosis is far from clear. To illustrate whether miRNA-dependent gene regulation is responsible for heterosis during maize germination, a deep-sequencing technique was applied to germinating embryos of a maize hybrid, Yuyu22, which is cultivated widely in China and its parental inbred lines, Yu87-1 and Zong3. The target genes of several miRNAs showing significant expression in the hybrid and parental lines were predicted and tested using real-time PCR. A total of 107 conserved maize miRNAs were co-detected in the hybrid and parental lines. Most of these miRNAs were expressed non-additively in the hybrid compared to its parental lines. These results indicated that miRNAs might participate in heterosis during maize germination and exert an influence via the decay of their target genes. Novel miRNAs were predicted follow a rigorous criterion and only the miRNAs detected in all three samples were treated as a novel maize miRNA. In total, 34 miRNAs belonged to 20 miRNA families were predicted in germinating maize seeds. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid showed higher embryo germination vigor compared to its parental lines

    Characterization and Evolution of microRNA Genes Derived from Repetitive Elements and Duplication Events in Plants

    Get PDF
    MicroRNAs (miRNAs) are a major class of small non-coding RNAs that act as negative regulators at the post-transcriptional level in animals and plants. In this study, all known miRNAs in four plant species (Arabidopsis thaliana, Populus trichocarpa, Oryza sativa and Sorghum bicolor) have been analyzed, using a combination of computational and comparative genomic approaches, to systematically identify and characterize the miRNAs that were derived from repetitive elements and duplication events. The study provides a complete mapping, at the genome scale, of all the miRNAs found on repetitive elements in the four test plant species. Significant differences between repetitive element-related miRNAs and non-repeat-derived miRNAs were observed for many characteristics, including their location in protein-coding and intergenic regions in genomes, their conservation in plant species, sequence length of their hairpin precursors, base composition of their hairpin precursors and the minimum free energy of their hairpin structures. Further analysis showed that a considerable number of miRNA families in the four test plant species arose from either tandem duplication events, segmental duplication events or a combination of the two. However, comparative analysis suggested that the contribution made by these two duplication events differed greatly between the perennial tree species tested and the other three annual species. The expansion of miRNA families in A. thaliana, O. sativa and S. bicolor are more likely to occur as a result of tandem duplication events than from segmental duplications. In contrast, genomic segmental duplications contributed significantly more to the expansion of miRNA families in P. trichocarpa than did tandem duplication events. Taken together, this study has successfully characterized miRNAs derived from repetitive elements and duplication events at the genome scale and provides comprehensive knowledge and deeper insight into the origins and evolution of miRNAs in plants

    MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development

    Get PDF
    The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield

    Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress

    Get PDF
    MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress

    Characterization of microRNAs Identified in a Table Grapevine Cultivar with Validation of Computationally Predicted Grapevine miRNAs by miR-RACE

    Get PDF
    BACKGROUND: Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1-3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. METHODOLOGY/PRINCIPAL FINDINGS: Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. 'Summer Black'. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of 'Summer Black'. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. CONCLUSION: The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics

    Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality

    Get PDF
    Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis viniferaL.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101-14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin inPinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101-14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, theMYB14gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries
    corecore