43,497 research outputs found

    Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV

    Full text link
    The near-side ridge structure in the (Delta phi)-(Delta eta) correlation observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be explained by the momentum kick model in which the ridge particles are medium partons that suffer a collision with the jet and acquire a momentum kick along the jet direction. Similar to the early medium parton momentum distribution obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the early medium parton momentum distribution in pp collisions at 7 TeV exhibits a rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at the LHC, Palaiseau, May 30-June2, 201

    Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective

    Get PDF
    Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated, Figs. 1 to 3 replace

    Analysis of pion elliptic flows and HBT interferometry in a granular quark-gluon plasma droplet model

    Get PDF
    In many simulations of high-energy heavy-ion collisions on an event-by-event analysis, it is known that the initial energy density distribution in the transverse plane is highly fluctuating. Subsequent longitudinal expansion will lead to many longitudinal tubes of quark-gluon plasma which have tendencies to break up into many spherical droplets because of sausage instabilities. We are therefore motivated to use a model of quark-gluon plasma granular droplets that evolve hydrodynamically to investigate pion elliptic flows and Hanbury-Brown-Twiss interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii in \sqrt{s_{NN}}=200 GeV Au + Au collisions at RHIC can be described well by an expanding source of granular droplets with an anisotropic velocity distribution.Comment: 9 pages, 6 figures, in Late

    Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets

    Full text link
    We examine the two-pion interferometry for a granular source of quark-gluon plasma droplets. The evolution of the droplets is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the HBT radius RoutR_{out} decreases if the initial size of the droplets decreases. On the other hand, RsideR_{side} depends on the droplet spatial distribution and is relatively independent of the droplet size. It increases with an increase in the width of the spatial distribution and the collective-expansion velocity of the droplets. As a result, the value of RoutR_{out} can lie close to RsideR_{side} for a granular quark-gluon plasma source. The granular model of the emitting source may provide an explanation to the RHIC HBT puzzle and may lead to a new insight into the dynamics of the quark-gluon plasma phase transition.Comment: 5 pages, 4 figure

    Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine

    Get PDF
    An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed

    Explanation of the RHIC HBT Puzzle by a Granular Source of Quark-Gluon Plasma Droplets

    Get PDF
    We present a review on the explanation of the RHIC HBT puzzle by a granular pion-emitting source of quark-gluon plasma droplets. The evolution of the droplet is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. The granular source evolution is obtained by superposing all of the evolutions of individual droplets. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the average particle emission time scales with the initial radius of the droplet. Pions will be emitted earlier if the droplet radius is smaller. An earlier emission time will lead to a smaller extracted HBT radius RoutR_{\rm out}, while the extracted HBT radius RsideR_{\rm side} is determined by the scale of the distribution of the droplet centers. However, a collective expansion of the droplets can further decrease RoutR_{\rm out}. As a result, the value of Rout/RsideR_{\rm out}/R_{\rm side} can be close to, or even less than 1 for theComment: 8 pages, 4 figures, invited talk presented at the XI International Workshop on Correlation and Fluctuation in Multiparticle Production, Nov. 21-24, 2006, Hangzhou, Chin

    Quarkonia and Quark Drip Lines in Quark-Gluon Plasma

    Full text link
    We extract the QQ-Qˉ\bar Q potential by using the thermodynamic quantities obtained in lattice gauge calculations. The potential is tested and found to give dissociation temperatures that agree well with those from lattice gauge spectral function analysis. Using such a QQ-Qˉ\bar Q potential, we examine the quarkonium states in a quark-gluon plasma and determine the `quark drip lines' which separate the region of bound color-singlet QQˉQ\bar Q states from the unbound region. The characteristics of the quark drip lines severely limit the region of possible bound QQˉQ\bar Q states with light quarks to temperatures close to the phase transition temperature. Bound quarkonia with light quarks may exist very near the phase transition temperature if their effective quark mass is of the order of 300-400 MeV and higher.Comment: 24 pages, 13 figures, in LaTe

    Heavy flavor kinetics at the hadronization transition

    Full text link
    We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to J. Phys.

    Novel Bose-Einstein Interference in the Passage of a Fast Particle in a Dense Medium

    Full text link
    When an energetic particle collides coherently with many medium particles at high energies, the Bose-Einstein symmetry with respect to the interchange of the exchanged virtual bosons leads to a destructive interference of the Feynman amplitudes in most regions of the phase space but a constructive interference in some other regions of the phase space. As a consequence, the recoiling medium particles have a tendency to come out collectively along the direction of the incident fast particle, each carrying a substantial fraction of the incident longitudinal momentum. Such an interference appearing as collective recoils of scatterers along the incident particle direction may have been observed in angular correlations of hadrons associated with a high-pTp_T trigger in high-energy AuAu collisions at RHIC.Comment: 10 pages, 2 figures, invited talk presented at the 35th Symposium on Nuclear Physics, Cocoyoc, Mexico, January 3, 2012, to be published in IOP Conference Serie
    • …
    corecore