147 research outputs found

    Discrete kink dynamics in hydrogen-bonded chains I: The one-component model

    Get PDF
    We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).Comment: 12 pages, 20 figure

    Thermal plasma of electric arc discharge in air between composite Cu-C electrodes

    No full text
    The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy techniques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma.Предложена комплексная методика исследования плазмы. На первом этапе методами оптической эмиссионной спектроскопии проводились измерения радиальных распределений температуры и электронной концентрации в плазме электродугового разряда в воздухе между композитными Cu-C и латунными электродами, а также медными электродами в потоке воздуха. На следующем этапе рассчитывались радиальные распределения электропроводности плазменной смеси путем решения уравнения энергетического баланса. Распределение электронной концентрации получено из электропроводности плазмы в допущении локального термодинамического равновесия.Запропонована комплексна методика дослідження плазми. На першому етапі методами оптичної емісійної спектроскопії проводились дослідження радіальних розподілів температури та електронної концентрації в плазмі електродугового розряду в повітрі між композитними Cu-C та латунними електродами, а також мідними електродами в потоці повітря. Наступним кроком розраховувались радіальні розподіли електро-провідності плазмової суміші шляхом розв’язку рівняння енергетичного балансу. Розподіл електронної концентрації отримали з електропровідності плазми в припущенні локальної термодинамічної рівноваги

    Constraint-based, Single-point Approximate Kinetic Energy Functionals

    Full text link
    We present a substantial extension of our constraint-based approach for development of orbital-free (OF) kinetic-energy (KE) density functionals intended for the calculation of quantum-mechanical forces in multi-scale molecular dynamics simulations. Suitability for realistic system simulations requires that the OF-KE functional yield accurate forces on the nuclei yet be relatively simple. We therefore require that the functionals be based on DFT constraints, local, dependent upon a small number of parameters fitted to a training set of limited size, and applicable beyond the scope of the training set. Our previous "modified conjoint" generalized-gradient-type functionals were constrained to producing a positive-definite Pauli potential. Though distinctly better than several published GGA-type functionals in that they gave semi-quantitative agreement with Born-Oppenheimer forces from full Kohn-Sham results, those modified conjoint functionals suffer from unphysical singularities at the nuclei. Here we show how to remove such singularities by introducing higher-order density derivatives. We give a simple illustration of such a functional used for the dissociation energy as a function of bond length for selected molecules.Comment: 16 pages, 9 figures, 2 tables, submitted to Phys. Rev.

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Thermodynamics of pyrope-majorite, Mg3Al2Si3O12-Mg4Si4O12, solid solution from atomistic model calculations

    Get PDF
    Static lattice energy calculations, based on empirical pair potentials have been performed for a large set of different structures with compositions between pyrope and majorite, and with different states of order of octahedral cations. The energies have been cluster expanded using pair and quaternary terms. The derived ordering constants have been used to constrain Monte Carlo simulations of temperature-dependent properties in the ranges of 1073 3673K and 0 20 GPa. The free energies of mixing have been calculated using the method of thermodynamic integration. At zero pressure the cubic/tetragonal transition is predicted for pure majorite at 3300 K. The transition temperature decreases with the increase of the pyrope mole fraction. A miscibility gap associated with the transition starts to develop at about 2000K and xmaj 0.8, and widens with the decrease in temperature and the increase in pressure. Activity composition relations in the range of 0 20 GPa and 1073 2673K are described with the help of a high-order Redlich Kister polynomial

    Consequence of one-electron oxidation and one-electron reduction for aniline

    Get PDF
    Quantum-chemical calculations were performed for all possible isomers of neutral aniline and its redox forms, and intramolecular proton-transfer (prototropy) accompanied by π-electron delocalization was analyzed. One-electron oxidation (PhNH2 – e → [PhNH2]+•) has no important effect on tautomeric preferences. The enamine tautomer is preferred for oxidized aniline similarly as for the neutral molecule. Dramatical changes take place when proceeding from neutral to reduced aniline. One-electron reduction (PhNH2 + e → [PhNH2]-•) favors the imine tautomer. Independently on the state of oxidation, π- and n-electrons are more delocalized for the enamine than imine tautomers. The change of the tautomeric preferences for reduced aniline may partially explain the origin of the CH tautomers for reduced nucleobases (cytosine, adenine, and guanine)
    corecore