25 research outputs found

    Tissue metabolic changes drive cytokine responses to Mycobacterium tuberculosis

    Get PDF
    Cellular metabolism can influence host immune responses to Mycobacterium tuberculosis (Mtb). Using a systems biology approach, differential expression of 292 metabolic genes involved in glycolysis, glutathione, pyrimidine and inositol phosphate pathways was evident at the site of a human tuberculin skin test challenge in patients with active tuberculosis infection. For 28 metabolic genes, we identified single nucleotide polymorphisms (SNPs) that were trans-acting for in vitro cytokine responses to Mtb stimulation, including glutathione and pyrimidine metabolism genes that alter production of Th1 and Th17 cytokines. Our findings identify novel therapeutic targets in host metabolism that may shape protective immunity to tuberculosis

    BCG vaccination-induced acquired control of mycobacterial growth differs from growth control preexisting to BCG vaccination

    Get PDF
    Bacillus Calmette-Guèrin - vaccination induces not only protection in infants and young children against severe forms of tuberculosis, but also against nontuberculosis related all-cause mortality. To delineate different factors influencing mycobacterial growth control, here we first investigate the effects of BCG-vaccination in healthy Dutch adults. About a quarter of individuals already control BCG-growth prior to vaccination, whereas a quarter of the vaccinees acquires the capacity to control BCG upon vaccination. This leaves half of the population incapable to control BCG-growth. Single cell RNA sequencing identifies multiple processes associated with mycobacterial growth control. These data suggest (i) that already controllers employ different mechanisms to control BCG-growth than acquired controllers, and (ii) that half of the individuals fail to develop measurable growth control irrespective of BCG-vaccination. These results shed important new light on the variable immune responses to mycobacteria in humans and may impact on improved vaccination against tuberculosis and other diseases.Immunogenetics and cellular immunology of bacterial infectious disease

    Resolving trained immunity with systems biology

    No full text
    Item does not contain fulltextTrained immunity is characterized by long-term functional reprogramming of innate immune cells following challenge with pathogens or microbial ligands during infection or vaccination. This cellular reprogramming leads to increased responsiveness upon restimulation, and is mediated through epigenetic and metabolic modifications. In this review, we describe how molecular mechanisms underlying trained immunity, for example, induced by β-glucan or Bacille Calmette-Guérin (BCG) vaccination, can be investigated by using and integrating different layers of information including genome, epigenome, transcriptome, proteome, metabolome, microbiome, immune cell phenotyping, and function. We also describe the most commonly used experimental and computational techniques. Finally, we provide a number of examples of how a systems biology approach was applied to study trained immunity to understand interindividual variation or the complex interplay between molecular layers. In conclusion, trained immunity represents an opportunity for regulating innate immune function, and understanding the complex interplay of mechanisms that mediate trained immunity might enable us to employ it as a clinical tool in the future

    Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis.

    No full text
    BACKGROUND: Understanding the complex orchestrated inflammation in atopic dermatitis (AD), one of the most common chronic inflammatory diseases worldwide, is essential for therapeutic approaches. However, a comparative analysis on the single-cell level of the inflammation signatures correlated with the severity is missing so far. METHODS: We applied single-cell RNA and T-cell receptor (TCR) sequencing on immune cells enriched from skin biopsies and matched blood samples of AD in comparison with psoriasis (PS) patients. RESULTS: Clonally propagated skin-derived T cells showed disease-specific TCR motifs shared between patients which was more pronounced in PS compared to AD. The disease-specific T-cell clusters were mostly of a Th2/Th22 sub-population in AD and Th17/Tc17 in PS, and their numbers were associated with severity scores in both diseases. Herein, we provide for the first time a list that associates cell type-specific gene expression with the severity of the two most common chronic inflammatory skin diseases. Investigating the cell signatures in the patients´ PBMCs and skin stromal cells, a systemic involvement of type-3 inflammation was clearly detectable in PS circulating cells, while in AD inflammatory signatures were most pronounced in fibroblasts, pericytes, and keratinocytes. Compositional and functional analyses of myeloid cells revealed the activation of antiviral responses in macrophages in association with disease severity in both diseases. CONCLUSION: Different disease-driving cell types and subtypes which contribute to the hallmarks of type-2 and type-3 inflammatory signatures and are associated with disease activities could be identified by single-cell RNA-seq and TCR-seq in AD and PS

    A single-cell view on host immune transcriptional response to in vivo BCG-induced trained immunity.

    No full text
    Bacillus Calmette-Guérin (BCG) vaccination is a prototype model for the study of trained immunity (TI) in humans, and results in a more effective response of innate immune cells upon stimulation with heterologous stimuli. Here, we investigate the heterogeneity of TI induction by single-cell RNA sequencing of immune cells collected from 156 samples. We observe that both monocytes and CD8(+) T cells show heterologous transcriptional responses to lipopolysaccharide, with an active crosstalk between these two cell types. Furthermore, the interferon-γ pathway is crucial in BCG-induced TI, and it is upregulated in functional high responders. Data-driven analyses and functional experiments reveal STAT1 to be one of the important transcription factors for TI shared in all identified monocyte subpopulations. Finally, we report the role of type I interferon-related and neutrophil-related TI transcriptional programs in patients with sepsis. These findings provide comprehensive insights into the importance of monocyte heterogeneity during TI in humans

    Thyrotrophin and thyroxine support immune homeostasis in humans

    No full text
    The endocrine and the immune systems interact by sharing receptors for hormones and cytokines, cross-control and feedback mechanisms. To date, no comprehensive study has assessed the impact of thyroid hormones on immune homeostasis. By studying immune phenotype (cell populations, antibody concentrations, circulating cytokines, adipokines and acute-phase proteins, monocyte-platelet interactions and cytokine production capacity) in two large independent cohorts of healthy volunteers of Western European descent from the Human Functional Genomics Project (500FG and 300BCG cohorts), we identified a crucial role of the thyroid hormone thyroxin (T4) and thyroid-stimulating hormone (TSH) on the homeostasis of lymphocyte populations. TSH concentrations were strongly associated with multiple populations of both effector and regulatory T cells, whereas B-cell populations were significantly associated with free T4 (fT4). In contrast, fT4 and TSH had little impact on myeloid cell populations and cytokine production capacity. Mendelian randomization further supported the role of fT4 for lymphocyte homeostasis. Subsequently, using a genomics approach, we identified genetic variants that influence both fT4 and TSH concentrations and immune responses, and gene set enrichment pathway analysis showed enrichment of fT4-affected gene expression in B-cell function pathways, including the CD40 pathway, further supporting the importance of fT4 in the regulation of B-cell function. In conclusion, we show that thyroid function controls the homeostasis of the lymphoid cell compartment. These findings improve our understanding of the immune responses and open the door for exploring and understanding the role of thyroid hormones in the lymphocyte function during disease

    Altered and allele-specific open chromatin landscape reveals epigenetic and genetic regulators of innate immunity in COVID-19.

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19 in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses revealed disease condition-specific regulation by transcription factors and their targets, including an interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chromatin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization. Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to COVID-19
    corecore