374 research outputs found

    Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics

    Full text link
    The use of elastic emission machining (EEM) for fabricating optics from low-thermal-expansion glass for extreme ultraviolet (EUV) lithography is examined. EUV optics require figure accuracy and surface roughness of 0.1 nm root mean square (rms) or better. EEM using a rotating-sphere head is demonstrated to achieve this level of surface smoothness after a certain depth of removal dependent on the material being processed. In tests of continuous machining for 12 h, no increase in surface roughness is observed, demonstrating the high temporal stability of this noncontact processing method. EEM using a rotating-sphere head is thus confirmed to have sufficient figuring and smoothing capability for the fabrication of EUV optics. © 2007 American Vacuum Society.M. Kanaoka et al. "Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25, 2110-2113 (2007) https://doi.org/10.1116/1.2789440

    An inducible, modular system for spatio-temporal control of gene expression in stomatal guard cells

    Get PDF
    Stomata, flanked by pairs of guard cells, are small pores on the leaf surfaces of plants and they function to control gas exchange between plants and the atmosphere. Stomata will open when water is available to allow for the uptake of carbon dioxide for photosynthesis. During periods of drought, stomata will close to reduce desiccation stress. As such, optimal functioning of stomata will impact on water use efficiency by plants. The development of an inducible, modular system for robust and targeted gene expression in stomatal guard cells is reported here. It is shown that application of ethanol vapour to activate the gene expression system did not affect the ability of stomata to respond to ABA in bioassays to determine the promotion of stomatal closure and the inhibition of stomatal opening. The system that has been developed allows for robust spatio-temporal control of gene expression in all cells of the stomatal lineage, thereby enabling molecular engineering of stomatal function as well as studies on stomatal development

    Prospective study of daily low-dose nedaplatin and continuous 5-fluorouracil infusion combined with radiation for the treatment of esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protracted low-dose concurrent chemotherapy combined with radiation has been proposed for enhanced treatment results for esophageal cancer. We evaluated the efficacy and the toxicity of a novel regimen of daily low-dose nedaplatin (cis-diammine-glycolatoplatinum) and continuous infusion of 5-fluorouracil (5-FU) with radiation in patients with esophageal squamous cell carcinoma.</p> <p>Methods</p> <p>Between January 2003 and June 2008, 33 patients with clinical stage I to IVB esophageal squamous cell carcinoma were enrolled. Nedaplatin (10 mg/body/day) was administered daily and 5-FU (500 mg/body/day) was administered continuously for 20 days. Fractionated radiotherapy for a total dose of 50.4-66 Gy was administered together with chemotherapy. Additional chemotherapy with nedaplatin and 5-FU was optionally performed for a maximum of 5 courses after chemoradiotherapy. The primary end-point of this study was to evaluate the tumor response, and the secondary end-points were to evaluate the toxicity and the overall survival.</p> <p>Results</p> <p>Twenty-two patients (72.7%) completed the regimen of chemoradiotherapy. Twenty patients (60.6%) achieved a complete response, 10 patients (30.3%) a partial response. One patient (3.0%) had a stable disease, and 2 (6.1%) a progressive disease. The overall response rate was 90.9% (95% confidence interval: 75.7%-98.1%). For grade 3-4 toxicity, leukopenia was observed in 75.8% of the cases, thrombocytopenia in 24.2%, anemia in 9.1%, and esophagitis in 36.4%, while late grade 3-4 cardiac toxicity occurred in 6.1%. Additional chemotherapy was performed for 26 patients (78.8%) and the median number of courses was 3 (range, 1-5). The 1-, 2- and 3-year survival rates were 83.9%, 76.0% and 58.8%, respectively. The 1- and 2-year survival rates were 94.7% and 88.4% in patients with T1-3 M0 disease, and 66.2% and 55.2% in patients with T4/M1 disease.</p> <p>Conclusion</p> <p>The treatment used in our study may yield a high complete response rate and better survival for each stage of esophageal squamous cell carcinoma.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00197444</p

    Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates

    Get PDF
    BACKGROUND: Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. METHODS: Pollen diffusates from Kentucky blue grass (Poa pratensis), rye grass (Lolium perenne) and Bermuda grass (Cynodon dactylon) were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. RESULTS: All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high M(r )proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at M(r )~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense) group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. CONCLUSION: One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1

    PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    Get PDF
    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase

    Lack of Effect of Sleep Apnea on Oxidative Stress in Obstructive Sleep Apnea Syndrome (OSAS) Patients

    Get PDF
    PURPOSE: The aim of this study was to evaluate markers of systemic oxidative stress and antioxidant capacity in subjects with and without OSAS in order to investigate the most important factors that determine the oxidant-antioxidant status. METHODS: A total of 66 subjects referred to our Sleep laboratory were examined by full polysomnography. Oxidative stress and antioxidant activity were assessed by measurement of the derivatives of reactive oxygen metabolites (d-ROMs) and the biological antioxidant capacity (BAP) in blood samples taken in the morning after the sleep study. Known risk factors for oxidative stress, such as age, sex, obesity, smoking, hypelipidemia, and hypertension, were investigated as possible confounding factors. RESULTS: 42 patients with OSAS (Apnea-Hypopnea index >15 events/hour) were compared with 24 controls (AHI<5). The levels of d-ROMS were significantly higher (p = 0.005) in the control group but the levels of antioxidant capacity were significantly lower (p = 0.004) in OSAS patients. The most important factors predicting the variance of oxidative stress were obesity, smoking habit, and sex. Parameters of sleep apnea severity were not associated with oxidative stress. Minimal oxygen desaturation and smoking habit were the most important predicting factors of BAP levels. CONCLUSION: Obesity, smoking, and sex are the most important determinants of oxidative stress in OSAS subjects. Sleep apnea might enhance oxidative stress by the reduction of antioxidant capacity of blood due to nocturnal hypoxia
    corecore