45 research outputs found

    The biology of Simulium erythrocephalum and S. chelevini (Diptera, Simuliidae): Morpho-logical, ecological and molecular data

    Get PDF
    The subgenus Boophthora is a typical Palearctic taxon, which includes only 6 species, among them. Simulium erythrocephalum has a transpalearctic distribution. In Europe, Adler notes only the species S. erythrocephalum, and Yankovsky – two species S. (Boophthora) erythrocephalum and S. (Boophthora) chelevini. According to morphological characteristics, these species differ in their life stages. We have studied the development of S. erythrocephalum and S. chelevini from three rivers of Volyn region, Ukraine (Styr, Chornoguzka, Putylivka) from 2017 to 2019. We used the EPPO PM7 / 129 standard. Collected samples, 615-bp fragments of the COI gene were sequenced from five individuals of S. erythrocephalum and five individuals of S. chelevini and compared with four samples of S. erythrocephalum from the GenBank. We obtained the nucleotide sequence of S. chelevini. All of the S. erythrocephalum samples from Ukraine had 692 bases, the S. erythrocephalum samples from Armenia had 673 bases. S. erythrocephalum and S. chelevini did not have any intraspecific variations. These intraspecific variations were not larger than the interspecific variations. It has been proved that the populations of S. erythrocephalum and S. chelevini from medium and small rivers of Volyn do not differ in biological, behavioural and genetic characteristics. Comparison of S. erythrocephalum and S. chelevini life stages showed clear differences in 20 morphological features, which are probably manifestations of phenotypic variability. Comparison of species with data from the GenBank from Spain and Armenia on the mitochondrial cytochrome c oxidase subunit I (COI) gene confirmed the opinion that S. erythrocephalum and S. chelevini are one species. On the phylogenetic tree, the data are not grouped, there is no clear separation of the clades. Bootstrap values are 95–100%, which may indicate a significant similarity of all studied samples and the lack of isolation of individual morphotypes from Volyn, Spain and Armenia. To finally confirm the taxonomic position of these two species, additional research is needed covering more individuals from different parts of Europe and analysis of more genes

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Sequestration of Highly Expressed mRNAs in Cytoplasmic Granules, P-Bodies, and Stress Granules Enhances Cell Viability

    Get PDF
    Transcriptome analyses indicate that a core 10%–15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical population and enhance its ability to withstand stress

    The lysine48-based polyubiquitin chain proteasomal signal: not a single child anymore

    No full text
    The conjugation of ubiquitin (Ub) to proteins is involved in the regulation of many processes. The modification serves as a recognition element in trans, in which downstream effectors bind to the modified protein and determine its fate and/or function. A polyUb chain that is linked through internal lysine (Lys)-48 of Ub and anchored to an internal Lys residue of the substrate has become the accepted "canonical" signal for proteasomal targeting and degradation. However, recent studies show that the signal is far more diverse and that chains based on other internal linkages, as well as linear or heterologous chains made of Ub and Ub-like proteins and even monoUb, are recognized by the proteasome. In addition, chains linked to residues other than internal Lys were described, all challenging the current paradigm

    KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth

    Get PDF
    NF-{kappa}B is a key transcriptional regulator involved in inflammation and cell proliferation, survival, and transformation. Several key steps in its activation are mediated by the ubiquitin (Ub) system. One uncharacterized step is limited proteasomal processing of the NF-{kappa}B1 precursor p105 to the p50 active subunit. Here, we identify KPC1 as the Ub ligase (E3) that binds to the ankyrin repeats domain of p105, ubiquitinates it, and mediates its processing both under basal conditions and following signaling. Overexpression of KPC1 inhibits tumor growth likely mediated via excessive generation of p50. Also, overabundance of p50 downregulates p65, suggesting that a p50-p50 homodimer may modulate transcription in place of the tumorigenic p50-p65. Transcript analysis reveals increased expression of genes associated with tumor-suppressive signals. Overall, KPC1 regulation of NF-{kappa}B1 processing appears to constitute an important balancing step among the stimulatory and inhibitory activities of the transcription factor in cell growth control

    The N-terminal domain of MyoD is necessary and sufficient for its nuclear localization-dependent degradation by the ubiquitin system

    No full text
    A growing number of proteins, including the myogenic transcription factor MyoD, are targeted for proteasomal degradation after N-terminal ubiquitination (NTU) where the first ubiquitin moiety is conjugated to the N-terminal residue rather than to an internal lysine. NTU might be essential in targeting both lysine-containing and naturally occurring lysine-less proteins such as p16INK4a and p14ARF; however, the mechanisms that underlie this process are largely unknown. Specifically, the recognition motif(s) in the target substrates and the ubiquitin ligase(s) that catalyze NTU are still obscure. Here we show that the N-terminal domain of MyoD is critical for its degradation and that its destabilizing effect depends on nuclear localization of the protein. Deletion of the first 15 aa of MyoD blocked completely its lysine-independent degradation. Importantly, transfer of the first 30 N-terminal residues of MyoD to GFP destabilized this otherwise stable protein, and, here too, targeting for degradation depended on localization of the protein to the nucleus. Deletion of the N-terminal domain of lysine-less MyoD did not abolish completely ubiquitination of the protein, suggesting that this domain may be required for targeting the protein also in a postubiquitination step. Interestingly, NTU is evolutionarily conserved: in the yeast Saccharomyces cerevisiae lysine-less (LL) MyoD is degraded in a ubiquitin-, N-terminal domain-, and nuclear localization-dependent manner. Taken together, our data suggest that a short N-terminal segment of MyoD is necessary and sufficient to render MyoD susceptible for ubiquitin- and nuclear-dependent degradation
    corecore