45 research outputs found

    Lbx2 regulates formation of myofibrils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The <it>Drosophila ladybird homeobox </it>gene (<it>lad</it>) functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (<it>Lbx</it>). Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood.</p> <p>Results</p> <p>To elucidate the role of Lbx in vertebrate myogenesis, we examined Lbx function in zebrafish. Zebrafish <it>lbx2 </it>transcripts appear in newly formed paraxial mesoderm and become restricted to adaxial cells, precursors of slow muscle. Slow muscles lose <it>lbx2 </it>expression as they differentiate, while a subset of differentiating fast muscle cells transiently expresses <it>lbx2</it>. Fin and hyoid muscle express <it>lbx2 </it>later. In contrast, <it>lbx1b </it>expression first appears lateral to the somites at late segmentation stages and is later restricted to fin muscle. Morpholino knockdown of Lbx1b and Lbx2 suppresses hypaxial muscle development. Moreover, knockdown of Lbx2 results in malformation of muscle fibers and reduced fusion of fast precursors, although no obvious effects on induction or specification are observed. Expression of myofilament genes, including <it>actin </it>and <it>myosin</it>, requires the engrailed repressor domain of Lbx2.</p> <p>Conclusion</p> <p>Our results elucidate a new function of Lbx2 as a regulator of myofibril formation.</p

    Signals and myogenic regulatory factors restrict pax3/7 expression to dermomyotome-like tissue in zebrafish.

    No full text
    Pax3/7 paired homeodomain transcription factors are important markers of muscle stem cells. Pax3 is required upstream of myod for lateral dermomyotomal cells in the amniote somite to form particular muscle cells. Later Pax3/7-dependent cells generate satellite cells and most body muscle. Here we analyse early myogenesis from, and regulation of, a population of Pax3-expressing dermomyotome-like cells in the zebrafish. Zebrafish pax3 is widely expressed in the lateral somite and, along with pax7, becomes restricted anteriorly and then to the external cells on the lateral somite surface. Midline-derived Hedgehog signals appear to act directly on lateral somite cells to repress Pax3/7. Both Hedgehog and Fgf8, signals that induce muscle formation within the somite, suppress Pax3/7 and promote expression of myogenic regulatory factors (MRFs) myf5 and myod in specific muscle precursor cell populations. Loss of MRF function leads to loss of myogenesis by specific populations of muscle fibres, with parallel up-regulation of Pax3/7. Myod is required for lateral fast muscle differentiation from pax3-expressing cells. In contrast, either Myf5 or Myod is sufficient to promote slow muscle formation from adaxial cells. Thus, myogenic signals act to drive somite cells to a myogenic fate through up-regulation of distinct combinations of MRFs. Our data show that the relationship between Pax3/7 genes and myogenesis is evolutionarily ancient, but that changes in the MRF targets for particular signals contribute to myogenic differences between species

    Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis

    Get PDF
    Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms

    Distinct functions of alternatively spliced isoforms encoded by zebrafish mef2ca and mef2cb

    Get PDF
    In mammals, an array of MEF2C proteins is generated by alternative splicing (AS), yet specific functions have not been ascribed to each isoform. Teleost fish possess two MEF2C paralogues, mef2ca and mef2cb. In zebrafish, the Mef2cs function to promote cardiomyogenic differentiation and myofibrillogenesis in nascent skeletal myofibers. We found that zebrafish mef2ca and mef2cb are alternatively spliced in the coding exons 4-6 region and these splice variants differ in their biological activity. Of the two, mef2ca is more abundantly expressed in developing skeletal muscle, its activity is tuned through zebrafish development by AS. By 24hpf, we found the prevalent expression of the highly active full length protein in differentiated muscle in the somites. The splicing isoform of mef2ca that lacks exon 5 (mef2ca 4-6), encodes a protein that has 50% lower transcriptional activity, and is found mainly earlier in development, before muscle differentiation. mef2ca transcripts including exon 5 (mef2ca 4-5-6) are present early in the embryo. Over-expression of this isoform alters the expression of genes involved in early dorso-ventral patterning of the embryo such as chordin, nodal related 1 and goosecoid, and induces severe developmental defects. AS of mef2cb generates a long splicing isoform in the exon 5 region (Mef2cbL) that predominates during somitogenesis. Mef2cbL contains an evolutionarily conserved domain derived from exonization of a fragment of intron 5, which confers the ability to induce ectopic muscle in mesoderm upon over-expression of the protein. Taken together, the data show that AS is a significant regulator of Mef2c activit
    corecore