35 research outputs found

    Management of Mangrove Ecosystem Potency in Kuala Langsa, Aceh

    Full text link
    The potency of mangrove ecosystems can be a provider of economic resources, preserving the ecological environment and providing environmental services. The existence of mangroves in Kuala Langsa is important to study about the economic potential, the potential of carbon sequestration in the form of biomass, coastal tourism potential and social potential of society in support of its development efforts. The result of the research shows that the potential existence of mangrove ecosystem to fishery sector is Rp. 657.563.000 / year, carbon sequestration potential in the form of biomass of 180.365 ton /year, with the economic value of carbon trade of Rp. 2.344.745.000/year, economic potential of coastal tourism reached Rp 22,921,107,253/year. Overall, the estimated total potential of existing mangrove ecosystems in Kuala Langsa is Rp. 29.923.415.253/year. To manage these potentials, a conservation strategy is required, performance improvement of customary institutions and the existence of such management institutions must be continuously strengthened

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Eco-Sustainable Recycling of Cement Kiln Dust (CKD) and Copper Tailings (CT) in the Cemented Paste Backfill

    No full text
    Cement global demand shows continued growth and a significant increase in the production volume, which may negatively impact the non-renewable natural resources and the environment, which is incompatible with sustainability goals. Cement kiln dust (CKD) is a primary concern associated with clinker manufacturing as a waste byproduct. Similarly, the mining industry produces copper tailing as unwanted material while beneficiating the ore, creating environmental problems due to difficulty in managing worldwide generated quantities that reach billions of metric tons. This study investigated the beneficial utilization of cement kiln dust and copper tailing as undesirable wastes in industrial applications through underground mines’ cemented paste backfill (CPB). Sixty different mixtures were prepared with three types of CKD collected from various cement manufacturers and were accordingly used with a proportion of 5, 10, and 15% to partially replace ordinary Portland cement (OPC) and pozzolan Portland cement (PPC) binders, represented in hundreds of CPB samples. The hardened specimens were subjected to density, uniaxial compressive strength (UCS), and axial deformation measurements to evaluate the physical and mechanical properties at curing up to 90 days. Meanwhile, X-ray powder diffraction (XRD) was extensively applied to chemically investigate the hydration products of CPB-hardened mixtures. Moreover, we developed a UCS predictive model applying two techniques: multiple variables regression analysis and artificial neural network (ANN). The results showed that the tricalcium silicate (Alite) and dicalcium silicate (Belite) phases form C-S-H upon hydrations and provide high strength in the binary mixtures. Meanwhile, the CKD’s lime saturation factor (LSF) governed the strength value in the ternary mixtures that utilized copper tailings. That makes CKD practical in the CPB mixture when partially replacing the OPC and PPC binders, with a proportion of up to 15%. In addition, the ANN technique’s predictive model exhibited a significant positive correlation with excellent statistical parameters that achieved 0.995, 0.065, and 0.911 for R2, RMSE, and MAE, respectively

    Eco-Sustainable Recycling of Cement Kiln Dust (CKD) and Copper Tailings (CT) in the Cemented Paste Backfill

    No full text
    Cement global demand shows continued growth and a significant increase in the production volume, which may negatively impact the non-renewable natural resources and the environment, which is incompatible with sustainability goals. Cement kiln dust (CKD) is a primary concern associated with clinker manufacturing as a waste byproduct. Similarly, the mining industry produces copper tailing as unwanted material while beneficiating the ore, creating environmental problems due to difficulty in managing worldwide generated quantities that reach billions of metric tons. This study investigated the beneficial utilization of cement kiln dust and copper tailing as undesirable wastes in industrial applications through underground mines’ cemented paste backfill (CPB). Sixty different mixtures were prepared with three types of CKD collected from various cement manufacturers and were accordingly used with a proportion of 5, 10, and 15% to partially replace ordinary Portland cement (OPC) and pozzolan Portland cement (PPC) binders, represented in hundreds of CPB samples. The hardened specimens were subjected to density, uniaxial compressive strength (UCS), and axial deformation measurements to evaluate the physical and mechanical properties at curing up to 90 days. Meanwhile, X-ray powder diffraction (XRD) was extensively applied to chemically investigate the hydration products of CPB-hardened mixtures. Moreover, we developed a UCS predictive model applying two techniques: multiple variables regression analysis and artificial neural network (ANN). The results showed that the tricalcium silicate (Alite) and dicalcium silicate (Belite) phases form C-S-H upon hydrations and provide high strength in the binary mixtures. Meanwhile, the CKD’s lime saturation factor (LSF) governed the strength value in the ternary mixtures that utilized copper tailings. That makes CKD practical in the CPB mixture when partially replacing the OPC and PPC binders, with a proportion of up to 15%. In addition, the ANN technique’s predictive model exhibited a significant positive correlation with excellent statistical parameters that achieved 0.995, 0.065, and 0.911 for R2, RMSE, and MAE, respectively

    Correlation between the estimated GFR and SWRD score in patients with posterior urethral valves at King Abdul-Aziz University Hospital

    No full text
    Abstract Objective The aim was to establish the reliability of the SWRD score as a predictor of both renal and bladder outcomes in posterior urethral valves. This retrospective study included 67 patients with PUVs at King Abdul-Aziz University Hospital. The score was calculated from voiding cystourethrogram before and after the relief of obstruction, and estimated glomerular filtration rates (eGFRs) were calculated as well. Results Based on Spearman correlations, both baseline eGFRs and SWRD scores can be possible predictors of long-term renal outcomes, as a significant positive correlation between the baseline eGFRs and the last eGFRs was found (p = 0.005). A significant negative correlation was also found between the SWRD score calculated before the intervention and the last eGFRs (p = 0.02). Additionally, the baseline SWRD scores can be possible predictors of short-term bladder outcomes, as the correlation analysis showed a positive relationship between the baseline SWRD scores and the SWRD scores calculated within 2 months after the intervention (p < 0.0001). A significant decrease in SWRD scores and eGFRs was found from before to after the intervention, regardless of the type of intervention. In conclusion, the SWRD scoring system proved to be a potentially promising tool in the anticipation of the clinical outcomes of PUVs
    corecore