358 research outputs found

    Dominant mobility modulation by the electric field effect at the LaAlO_3 / SrTiO_3 interface

    Full text link
    Caviglia et al. [Nature (London) 456, 624 (2008)] have found that the superconducting LaAlO_3 / SrTiO_3 interface can be gate modulated. A central issue is to determine the principal effect of the applied electric field. Using magnetotransport studies of a gated structure, we find that the mobility variation is almost five times as large as the sheet carrier density. Furthermore, superconductivity can be suppressed at both positive and negative gate bias. These results indicate that the relative disorder strength strongly increases across the superconductor-insulator transition.Comment: 4 pages, 4 figure

    Coexistence of two- and three-dimensional Shubnikov-de Haas oscillations in Ar^+ -irradiated KTaO_3

    Full text link
    We report the electron doping in the surface vicinity of KTaO_3 by inducing oxygen-vacancies via Ar^+ -irradiation. The doped electrons have high mobility (> 10^4 cm^2/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar^+ -irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides

    Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1

    Get PDF
    BACKGROUND: Modulation of protein activity by phosphorylation through kinases and subsequent de-phosphorylation by phosphatases is one of the most prominent cellular control mechanisms. Thus, identification of kinase substrates is pivotal for the understanding of many – if not all – molecular biological processes. Equally, the possibility to deliberately tune kinase activity is of great value to analyze the biological process controlled by a particular kinase. RESULTS: Here we have applied a chemical genetic approach and generated an analog-sensitive version of CDKA;1, the central cell-cycle regulator in Arabidopsis and homolog of the yeast Cdc2/CDC28 kinases. This variant could largely rescue a cdka;1 mutant and is biochemically active, albeit less than the wild type. Applying bulky kinase inhibitors allowed the reduction of kinase activity in an organismic context in vivo and the modulation of plant growth. To isolate CDK substrates, we have adopted a two-dimensional differential gel electrophoresis strategy, and searched for proteins that showed mobility changes in fluorescently labeled extracts from plants expressing the analog-sensitive version of CDKA;1 with and without adding a bulky ATP variant. A pilot set of five proteins involved in a range of different processes could be confirmed in independent kinase assays to be phosphorylated by CDKA;1 approving the applicability of the here-developed method to identify substrates. CONCLUSION: The here presented generation of an analog-sensitive CDKA;1 version is functional and represent a novel tool to modulate kinase activity in vivo and identify kinase substrates. Our here performed pilot screen led to the identification of CDK targets that link cell proliferation control to sugar metabolism, proline proteolysis, and glucosinolate production providing a hint how cell proliferation and growth are integrated with plant development and physiology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-016-0900-7) contains supplementary material, which is available to authorized users

    Thickness dependence of the mobility at the LaAlO_3 / SrTiO_3 interface

    Full text link
    The electronic transport properties of a series of LaAlO_3 / SrTiO_3 interfaces were investigated, and a systematic thickness dependence of the sheet resistance and magnetoresistance was found for constant growth conditions. This trend occurs above the critical thickness of four unit cells, below which the LaAlO_3 / SrTiO_3 interface is not conducting. A dramatic decrease in mobility of the electron gas of nearly two orders of magnitude was observed with increasing LaAlO_3 thickness from five to 25 unit cells.Comment: 3 pages, 4 figures, submitted for publicatio

    Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethanol production from paper sludge (PS) by simultaneous saccharification and fermentation (SSF) is considered to be the most appropriate way to process PS, as it contains negligible lignin. In this study, SSF was conducted using a cellulase produced from PS by the hypercellulase producer, <it>Acremonium cellulolyticus </it>C-1 for PS saccharification, and a thermotolerant ethanol producer <it>Saccharomyces cerevisiae </it>TJ14 for ethanol production. Using cellulase of PS origin minimizes biofuel production costs, because the culture broth containing cellulase can be used directly.</p> <p>Results</p> <p>When 50 g PS organic material (PSOM)/l was used in SSF, the ethanol yield based on PSOM was 23% (g ethanol/g PSOM) and was two times higher than that obtained by a separate hydrolysis and fermentation process. Cellulase activity throughout SSF remained at around 60% of the initial activity. When 50 to 150 g PSOM/l was used in SSF, the ethanol yield was 21% to 23% (g ethanol/g PSOM) at the 500 ml Erlenmeyer flask scale. Ethanol production and theoretical ethanol yield based on initial hexose was 40 g/l and 66.3% (g ethanol/g hexose) at 80 h, respectively, when 161 g/l of PSOM, 15 filter paper units (FPU)/g PSOM, and 20% inoculum were used for SSF, which was confirmed in the 2 l scale experiment. This indicates that PS is a good raw material for bioethanol production.</p> <p>Conclusions</p> <p>Ethanol concentration increased with increasing PSOM concentration. The ethanol yield was stable at PSOM concentrations of up to 150 g/l, but decreased at concentrations higher than 150 g/l because of mass transfer limitations. Based on a 2 l scale experiment, when 1,000 kg PS was used, 3,182 kFPU cellulase was produced from 134.7 kg PS. Produced cellulase was used for SSF with 865.3 kg PS and ethanol production was estimated to be 51.1 kg. Increasing the yeast inoculum or cellulase concentration did not significantly improve the ethanol yield or concentration.</p

    Towards Multi-Language Recipe Personalisation and Recommendation

    Full text link
    Multi-language recipe personalisation and recommendation is an under-explored field of information retrieval in academic and production systems. The existing gaps in our current understanding are numerous, even on fundamental questions such as whether consistent and high-quality recipe recommendation can be delivered across languages. In this paper, we introduce the multi-language recipe recommendation setting and present grounding results that will help to establish the potential and absolute value of future work in this area. Our work draws on several billion events from millions of recipes and users from Arabic, English, Indonesian, Russian, and Spanish. We represent recipes using a combination of normalised ingredients, standardised skills and image embeddings obtained without human intervention. In modelling, we take a classical approach based on optimising an embedded bi-linear user-item metric space towards the interactions that most strongly elicit cooking intent. For users without interaction histories, a bespoke content-based cold-start model that predicts context and recipe affinity is introduced. We show that our approach to personalisation is stable and easily scales to new languages. A robust cross-validation campaign is employed and consistently rejects baseline models and representations, strongly favouring those we propose. Our results are presented in a language-oriented (as opposed to model-oriented) fashion to emphasise the language-based goals of this work. We believe that this is the first large-scale work that comprehensively considers the value and potential of multi-language recipe recommendation and personalisation as well as delivering scalable and reliable models.Comment: 5 table

    Defect-control of conventional and anomalous electron transport at complex oxide interfaces

    Get PDF
    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO3/SrTiO3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10  K. Considering these two sources of nonlinearity, we suggest a phenomenological model capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. The most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentratio

    The role of the RACK1 ortholog Cpc2p in modulating pheromone-induced cell cycle arrest in fission yeast

    Get PDF
    The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to Gβ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase

    Integration of Global Signaling Pathways, cAMP-PKA, MAPK and TOR in the Regulation of FLO11

    Get PDF
    The budding yeast, Saccharomyces cerevisiae, responds to various environmental cues by invoking specific adaptive mechanisms for their survival. Under nitrogen limitation, S. cerevisiae undergoes a dimorphic filamentous transition called pseudohyphae, which helps the cell to forage for nutrients and reach an environment conducive for growth. This transition is governed by a complex network of signaling pathways, namely cAMP-PKA, MAPK and TOR, which controls the transcriptional activation of FLO11, a flocculin gene that encodes a cell wall protein. However, little is known about how these pathways co-ordinate to govern the conversion of nutritional availability into gene expression. Here, we have analyzed an integrative network comprised of cAMP-PKA, MAPK and TOR pathways with respect to the availability of nitrogen source using experimental and steady state modeling approach. Our experiments demonstrate that the steady state expression of FLO11 was bistable over a range of inducing ammonium sulphate concentration based on the preculturing condition. We also show that yeast switched from FLO11 expression to accumulation of trehalose, a STRE response controlled by a transcriptional activator Msn2/4, with decrease in the inducing concentration to complete starvation. Steady state analysis of the integrative network revealed the relationship between the environment, signaling cascades and the expression of FLO11. We demonstrate that the double negative feedback loop in TOR pathway can elicit a bistable response, to differentiate between vegetative growth, filamentous growth and STRE response. Negative feedback on TOR pathway function to restrict the expression of FLO11 under nitrogen starved condition and also with re-addition of nitrogen to starved cells. In general, we show that these global signaling pathways respond with specific sensitivity to regulate the expression of FLO11 under nitrogen limitation. The holistic steady state modeling approach of the integrative network revealed how the global signaling pathways could differentiate between multiple phenotypes

    Fabrication of Functionalized Double-Lamellar Multifunctional Envelope-Type Nanodevices Using a Microfluidic Chip with a Chaotic Mixer Array

    Get PDF
    Multifunctional envelope-type nanodevices (MENDs) are very promising non-viral gene delivery vectors because they are biocompatible and enable programmed packaging of various functional elements into an individual nanostructured liposome. Conventionally MENDs have been fabricated by complicated, labor-intensive, time-consuming bulk batch methods. To avoid these problems in MEND fabrication, we adopted a microfluidic chip with a chaotic mixer array on the floor of its reaction channel. The array was composed of 69 cycles of the staggered chaotic mixer with bas-relief structures. Although the reaction channel had very large Péclet numbers (>105) favorable for laminar flows, its chaotic mixer array led to very small mixing lengths (<1.5 cm) and that allowed homogeneous mixing of MEND precursors in a short time. Using the microfluidic chip, we fabricated a double-lamellar MEND (D-MEND) composed of a condensed plasmid DNA core and a lipid bilayer membrane envelope as well as the D-MEND modified with trans-membrane peptide octaarginine. Our lab-on-a-chip approach was much simpler, faster, and more convenient for fabricating the MENDs, as compared with the conventional bulk batch approaches. Further, the physical properties of the on-chip-fabricated MENDs were comparable to or better than those of the bulk batch-fabricated MENDs. Our fabrication strategy using microfluidic chips with short mixing length reaction channels may provide practical ways for constructing more elegant liposome-based non-viral vectors that can effectively penetrate all membranes in cells and lead to high gene transfection efficiency
    corecore