42,278 research outputs found

    Experimental Comparisons of Derivative Free Optimization Algorithms

    Get PDF
    In this paper, the performances of the quasi-Newton BFGS algorithm, the NEWUOA derivative free optimizer, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the Differential Evolution (DE) algorithm and Particle Swarm Optimizers (PSO) are compared experimentally on benchmark functions reflecting important challenges encountered in real-world optimization problems. Dependence of the performances in the conditioning of the problem and rotational invariance of the algorithms are in particular investigated.Comment: 8th International Symposium on Experimental Algorithms, Dortmund : Germany (2009

    Process feasibility study in support of silicon material, task 1

    Get PDF
    Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon

    Continuous loading of 1^{1}S0_{0} calcium atoms into an optical dipole trap

    Full text link
    We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of 1^{1}S0_{0} calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a wide range of atomic species. Our starting point is a reservoir of moderately cold (≈300μ\approx 300 \muK) metastable 3^{3}P2_{2}-atoms prepared by means of a magneto-optic trap (triplet-MOT). A focused 532 nm laser beam produces a strongly elongated optical potential for 1^{1}S0_{0}-atoms with up to 350 μ\muK well depth. A weak focused laser beam at 430 nm, carefully superimposed upon the ODT beam, selectively pumps the 3^{3}P2_{2}-atoms inside the capture volume to the singlet state, where they are confined by the ODT. The triplet-MOT perpetually refills the capture volume with 3^{3}P2_{2}-atoms thus providing a continuous stream of cold atoms into the ODT at a rate of 10710^7 s−1^{-1}. Limited by evaporation loss, in 200 ms we typically load 5×1055 \times 10^5 atoms with an initial radial temperature of 85 μ\muK. After terminating the loading we observe evaporation during 50 ms leaving us with 10510^5 atoms at radial temperatures close to 40 μ\muK and a peak phase space density of 6.8×10−56.8 \times 10^{-5}. We point out that a comparable scheme could be employed to load a dipole trap with 3^{3}P0_{0}-atoms.Comment: 4 pages, 4 figure

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    Toward optimal X-ray flux utilization in breast CT

    Full text link
    A realistic computer-simulation of a breast computed tomography (CT) system and subject is constructed. The model is used to investigate the optimal number of views for the scan given a fixed total X-ray fluence. The reconstruction algorithm is based on accurate solution to a constrained, TV-minimization problem, which has received much interest recently for sparse-view CT data.Comment: accepted to the 11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 201
    • …
    corecore