55 research outputs found

    Down Type Isosinglet Quarks in ATLAS

    Get PDF
    We evaluate the discovery reach of the ATLAS experiment for down type isosinglet quarks, DD, using both their neutral and charged decay channels, namely the process ppDDˉ+Xpp\to D\bar{D}+X with subsequent decays resulting in 2+2j+ETmiss2\ell+2j+E^{miss}_{T}, 3+2j+ETmiss3\ell+2j+E^{miss}_{T} and 2+4j2\ell+4j final states. The integrated luminosity required for observation of a heavy quark is estimated for a mass range between 600 and 1000 GeV using the combination of results from different search channels.Comment: 12 page

    Avenues of cognition of nongravitational local gauge field theories

    Get PDF
    This controbution is devoted to present basic fearures of a unifying local gauge field theory, prevailing up to a mass scale of approximately 10 16 GeV , allowing the neglect of gravitational curvature effects – indicated by the attribute : ’nongravitational’ in the title above

    Nonlinear QED and Physical Lorentz Invariance

    Full text link
    The spontaneous breakdown of 4-dimensional Lorentz invariance in the framework of QED with the nonlinear vector potential constraint A_{\mu}^{2}=M^{2}(where M is a proposed scale of the Lorentz violation) is shown to manifest itself only as some noncovariant gauge choice in the otherwise gauge invariant (and Lorentz invariant) electromagnetic theory. All the contributions to the photon-photon, photon-fermion and fermion-fermion interactions violating the physical Lorentz invariance happen to be exactly cancelled with each other in the manner observed by Nambu a long ago for the simplest tree-order diagrams - the fact which we extend now to the one-loop approximation and for both the time-like (M^{2}>0) and space-like (M^{2}<0) Lorentz violation. The way how to reach the physical breaking of the Lorentz invariance in the pure QED case taken in the flat Minkowskian space-time is also discussed in some detail.Comment: 16 pages, 2 Postscript figures to be published in Phys. Rev.

    Thermodynamic instabilities in one dimensional particle lattices: a finite-size scaling approach

    Full text link
    One-dimensional thermodynamic instabilities are phase transitions not prohibited by Landau's argument, because the energy of the domain wall (DW) which separates the two phases is infinite. Whether they actually occur in a given system of particles must be demonstrated on a case-by-case basis by examining the (non-) analyticity properties of the corresponding transfer integral (TI) equation. The present note deals with the generic Peyrard-Bishop model of DNA denaturation. In the absence of exact statements about the spectrum of the singular TI equation, I use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to derive the critical exponents.Comment: 5 pages, 6 figures, subm. to Phys. Rev.

    Conservation laws and scattering for de Sitter classical particles

    Full text link
    Starting from an intrinsic geometric characterization of de Sitter timelike and lightlike geodesics we give a new description of the conserved quantities associated with classical free particles on the de Sitter manifold. These quantities allow for a natural discussion of classical pointlike scattering and decay processes. We also provide an intrinsic definition of energy of a classical de Sitter particle and discuss its different expressions in various local coordinate systems and their relations with earlier definitions found in the literature.Comment: 25 pages, 1 figur

    An updated analysis of eps'/eps in the standard model with hadronic matrix elements from the chiral quark model

    Full text link
    We discuss the theoretical and experimental status of the CP violating ratio eps'/eps. We revise our 1997 standard-model estimate-based on hadronic matrix elements computed in the chiral quark model up to O(p^4) in the chiral expansion-by including an improved statistical analysis of the uncertainties and updated determination of the Cabibbo-Kobayashi-Maskawa elements and other short-distance parameters. Using normal distributions for the experimental input data we find Re eps'/eps = (2.2 \pm 0.8) x 10^{-3}, whereas a flat scanning gives 0.9 x 10^{-3} < Re eps'/eps < 4.8 x 10^{-3}. Both results are in agreement with the current experimental data. The key element in our estimate is, as before, the fit of the Delta I=1/2 rule, which allows us to absorb most of the theoretical uncertainties in the determination of the model-dependent parameters in the hadronic matrix elements. Our semi-phenomenological approach leads to numerical stability against variations of the renormalization scale and scheme dependence of the short- and long-distance components. The same dynamical mechanism at work in the selection rule also explains the larger value obtained for \ratio with respect to other estimates. A coherent picture of K -> pi pi decays is thus provided.Comment: 15 pages, 11 figures, RevTeX, discussion updated, refs adde

    Moduli in Exceptional SUSY Gauge Theories

    Get PDF
    The low energy structures of N=1 supersymmetric models with E_6, F_4 and E_7 gauge groups and fundamental irrep matter contents are studied herein. We identify sets of gauge invariant composites which label all flat directions in the confining/Higgs phases of these theories. The impossibility of mapping several of these primary operators rules out previously conjectured exceptional self duals reported in the literature.Comment: 20 pages, harvmac and tables macro

    Sterile Neutrinos in E_6 and a Natural Understanding of Vacuum Oscillation Solution to the Solar Neutrino Puzzle

    Get PDF
    If Nature has chosen the vacuum oscillation solution to the Solar neutrino puzzle, a key theoretical challenge is to understand the extreme smallness of the ΔmνeνX2\Delta m^2_{\nu_e-\nu_X} (1010eV2\sim 10^{-10} eV^2) required for the purpose. We find that in a class of models such as [SU(3)]^3 or its parent group E_6, which contain one sterile neutrino, νis\nu_{is} for each family, the Δmνiνis2\Delta m^2_{\nu_i-\nu_{is}} is proportional to the cube of the lepton Yukawa coupling. Therefore fitting the atmospheric neutrino data then predicts the νeνes\nu_e-\nu_{es} mass difference square to be (memμ)3Δmatmos2\sim (\frac{m_e}{m_{\mu}})^3 \Delta m^2_{atmos}, where the atmospheric neutrino data is assumed to be solved via the νμνμs\nu_{\mu}-\nu_{\mu s} oscillation. This provides a natural explanation of the vacuum oscillation solution to the solar neutrino problem.Comment: 7 pages, UMD-PP-99-109; new references added; no other chang

    Leptogenesis and Neutrino Oscillations Within A Predictive G(224)/SO(10)-Framework

    Full text link
    A framework based on an effective symmetry that is either G(224)= SU(2)_L x SU(2)_R xSU(4)^c or SO(10) has been proposed (a few years ago) that successfully describes the masses and mixings of all fermions including neutrinos, with seven predictions, in good accord with the data. Baryogenesis via leptogenesis is considered within this framework by allowing for natural phases (~ 1/20-1/2) in the entries of the Dirac and Majorana mass-matrices. It is shown that the framework leads quite naturally, for both thermal as well as non-thermal leptogenesis, to the desired magnitude for the baryon asymmetry. This result is obtained in full accord with the observed features of the atmospheric and solar neutrino oscillations, as well as with those of the quark and charged lepton masses and mixings, and the gravitino-constraint. Hereby one obtains a unified description of fermion masses, neutrino oscillations and baryogenesis (via leptogenesis) within a single predictive framework.Comment: Efficiency factor updated, some clarifications and new references added. 19 page
    corecore