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Abstract. This controbution is devoted to present basic fearures of a unifying local gauge

field theory, prevailing up to a mass scale of approximately 10 16 GeV , allowing the

neglect of gravitational curvature effects – indicated by the attribute : ’nongravitational’

in the title above .

1 Introduction

The two main mass generation mechanisms within a general gauge field theory in 3 + 1 uncurved

space-time dimensions – henceforth called gravitationless gauge field theory –

– minimally the neutrino mass extended standard model based on the gauge group

S U3 c × S U2 L × U1 Y and one scalar doublet with respect to S U2 L –

form the basis of the present outline, supposed to be an integral part of an enveloping unifying gauge

group , minimally SO10 ≡ spin10.

Table 1.

1) the Bose condensation of some components of elementary scalar fields
scalar stands here for scalar and/or pseudoscalar Yukawa couplings

2) the Bose condensation of the gauge field-strength bilinear
– gauge- and renormilzation group invariant with respect to the unbroken gauge group S U3 c

The key features of point 1) in table 1, are outlined in section 2.

The main topic here, point 2) in table 1, is elaborated on in section E.
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2 Bose condensation of elementary scalar fields – the

Brout-Englert-Higgs effect

Recent assessments can be found in the talks of François Englert – [1-2013] and, more historically

oriented, Peter Higgs [2-2013] at the Nobel Prize 2013 awards ceremony.

We base the general properties of spontaneous gauge breaking of an enveloping gravitationless gauge

field theory , based on a gauge group G env ⊃ G min in the sense of gauge group unification beyond

the minimal case G min = S U3c × S U2 L × U1 Y , presented in the introduction.

A minimal such enveloping gauge group is

G min
env = SO10 ≡ spin10 (1)

as discussed in refs. [3-1975] and [4-2008] .

Within larger simple enveloping groups the exceptional chain

G env → E6 ⊂ E8 ⊃ E6 × S U3 (2)

is singled out [5-1976], [6-1980] , most importantly because it offers the possibility of canceling all

gauge- and gravitational anomalies in the product gauge group [7-1984] , [8-2012]

G env = E8 × E8 (3)

Following the hypothesis of an underlying unifying gauge group the top down of gauge breaking is

initiated by a primary breaking followed last by the electroweak gauge breaking .

2-1 Primary gauge breaking

Primary gauge beaking is linked to the unifying gauge group scale M env assumed and also restricted

by limits on direct observation of baryon decays and lepton flavor violation to be much larger than the

electroweak scale

M env � v =

(√ √
2 G F

) −1

= 246.220 GeV (4)

In eq. 4 v denotes the v.e.v. of the unique doublet scalar field using the quaternion associated basis

for the local scalar fields

z ( x ) =

⎛⎜⎜⎜⎜⎜⎝ ϕ 0 − ( ϕ − ) ∗

ϕ − (
ϕ 0

) ∗
⎞⎟⎟⎟⎟⎟⎠ ( x )

ϕ 0 = 1 /
√

2 ( Z 0 − i Z 3 ) ; ϕ − = 1 /
√

2 ( Z 2 − i Z 1 )

Z μ =
(

Z μ

) ∗
= ( Z 0 , Z 1 , Z 2 , Z 3 ) =

(
Z 0 , �Z

)
σ 0 =

(
1 0

0 1

)
, σ 1 =

(
0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
σ μ = ( σ 0 , σ 1 , σ 2 , σ 3 ) =

(
σ 0 , �σ

)

(5)

In eq. 5 the symbol ∗ denotes hermitian conjugation of individual complex and/or real field compo-

nents.

Thus the quantity z , defined in eq. 5 , shows its quaternionic representation

z ( x ) = 1√
2

(
Z 0 σ 0 +

∑ 3
k=1 Z k

1
i
σ k

)
( x ) (6)
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The four 2× 2 matrices , displayed in eq. 5 , form a 1 to 1 true representation of the base quaternions

σ 0 ↔ q 0 = ¶ ; 1
i
σ m ↔ q m for m = 1, 2, 3

q m q n = − δ mn q 0 + ε mnr q r for m, n, r = 1, 2, 3
(7)

As we will see , the final stage of the ( nu-mass extended - ) standard model gauge breaking involving

just 1 doublet of scalars with respect to the elecroweak part S U2 w × Y w represents a case for

perfectly semiclassical , driven Bose condensation , eventually contrasting with intrinsic properties of

primary breakdown.

This is so, because there is precisely 1 invariant

I ( z , z † ) = z z † = 1
2

∑ 3
μ=0

(
Z μ

) 2
(8)

with respect to S U2 w × Y w of which a general invariant is a function .

This would not remain true for more than one scalar doublet .

As a consequence of eqs. 4 - 8 , the electroweak gauge breaking is driven and semiclassical

〈 Ω | z ( x ) | Ω 〉 = 1√
2

(
v 0

0 v

)
with v = 246.220 GeV , independent of x (9)

We shall discuss 2 types of primary gauge breaking denoted a) and b) below .

The v.e.v. v in eq. 9 corresponds to the classical minimum of the quartic potential , uniquely restricted

to depend on two parameters

V
(

z , z † ) = [
− μ2 z z † + λ

(
z z † ) 2

]
11

(10)

The minimum conditions become

∂ Z ν
V =

(
− μ 2 + λ | Z | 2

)
Z ν = 0 −→ z z † ∣∣∣

11
= 1

2
μ 2 / λ

V | min = − 1
4

(
μ 4 / λ

) (11)

The second derivatives with respect to Z at the minimum of the potential become

1
2
∂ Z 


∂ Z σ
V = λ Z 
 Z σ

∣∣∣
min
= λ v2 δ 0
 δ 0σ ; Z ν | min =

(
v , �0

)
(12)

Expanding the deviation of the potential up to quadratic terms around the minimum thus yields

( Δ V ) (2) = λ v 2 ( Δ Z 0 ) 2 ; Z 0 ( x ) = v + Δ Z 0 ( x ) (13)

It is customary to denote the shifted hermitian field Δ Z 0 ( x )

Z 0 = v + Δ Z 0 ; Δ Z 0 ( x ) = H ( x ) (14)

From eq. 14 we read off the mass of the field H ( x ) as well as the vanishing of the mass of the other

three fields

m 2
H
= 2 λ v 2 = 2 μ 2 ; m �Z

∣∣∣
f romV

= 0 ; �Z ( x ) = ( Z 1 , Z 2 , Z 3 ) ( x ) (15)

However in the case at hand the existence of would-be long range forces represented by the S U2 L ×
U1 Y gauge field interactions does not permit the existence of goldstone-modes .

The three would-be Goldstone fields, defined in eq. 15, through their space-time gradient, mix with

the gauge bosons to become massive, vis. W ± and Z̃

∂ x τ Z m ( x ) ↔ W ±
τ ( x ) , Z̃ τ ( x ) (16)
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in such a way as to obtain masses of the 3 massive gauge bosons m W ,m Z̃ and physically form

the longitudinal spin components of the resulting massive states (resonances) . In eq. 16 the neutral

massive gauge boson is denoted Z̃ not to confuse it with the sclar field components Z 0 , �Z .

In tree approximation the mass-square of the H-field is twice the value of the Z 0 field in the unbroken

case, i.e. for μ 2 → − μ 2

m 2
H
= 2 μ 2 → μ = 1√

2
m H = 88.388 GeV for m H = 125 GeV (17)

The detailed description of the mixing as stated in eq. 16 is not given here. A complete derivation can

be found in the textbook ref. 9 = [9-1995] .

The simplicity of the presumably lowest in scale gauge breaking relative to the SM gauge group

S U2 L × U1 Y prompted most discussions of primary gauge breaking to be of the same type b)

presented below, i.e. driven - semiclassical: for an example of primary gauge breakdown patterns see

e.g. ref. 10 = [10-1013] .

This brings us to the two types a) and b) – of an enveloping gravitationless gauge field theory. For both

types the scalar field variables turn out to involve a complex ensemble of irreducible representations

of the enveloping gauge group – as e.g. SO10 , in particular for the generation of masses for neutrino

flavors, both light and heavy, as discussed e.g. in refs. 4 = [4-2008] and 10 = [10-1013] through

Yukawa couplings to basic fermion bilinears .

Two recent papers deserve mention here by Guido Altarelli ref.11 = [11-2014] and Ferruccio Feruglio,

Ketan M. Patel and Denise Vicino ref. 12 = [12-2014]

We introduce notation for the ensemble of scalar fields adapted to primary gauge breaking, generaliz-

ing S U2 L doublets as defined in eqs. 5 - 7 .

Lets fix for definiteness

G min
env = SO10 ≡ spin10 (18)

in the following. A general irreducible representation of SO10 shall be denoted [D] , where D is

equivalenced to its dimension. As entry point we take the [16] representation for one fermion family

( the lightest in mass ) in the left chiral basis

[16] :

⎛⎜⎜⎜⎜⎜⎜⎝ u 1 u 2 u 3 ν e | N e û 3 û 2 û 1

d 1 d 2 d 3 e − | e + d̂ 3 d̂ 2 d̂ 1

⎞⎟⎟⎟⎟⎟⎟⎠
γ̇ → L

= ( f ) γ̇
(19)

It is instructive to illustrate the use of the basis defined in eq. 19 considering

the Majorana logic characterized by N e,μ,τ

derived from the subgroup decomposition

spin10 → SU5 × U1 J 5
(20)

Among the 3 generators of spin10 commuting with S U3 c , I 3 L , I 3 R , B − L and forming part of

the Cartan subalgebra of spin10 there is one combination, denoted J 5 in eq. 20, commuting with its

largest unitary subgroup SU5 . The charges Q ( J 5 ) form the pattern as in eq. 21

[16] : Q ( J 5 ) =

⎛⎜⎜⎜⎜⎜⎝ 1 1 1 −3 | 5 1 1 1

1 1 1 −3 | 1 −3 −3 −3

⎞⎟⎟⎟⎟⎟⎠ (21)

Q ( J μ ) with charges as given in eq. 21 represents a hermitian generator of the Cartan subalgebra

of spin10 , unique up to a (real) multiplicative factor, which commutes with the the SU5 subgroup of
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spin10 . The flavors within one family sharing the same Q-charges in fact form irreducible represen-

tations of SU5 , which shall be labeled

D ( S U5 ) → {D ( S U5 )} Q (22)

with D ( S U5 ) equivalenced with the dimension of the representation. The suffix Q is added in eq.

22, since in the present context SU5 multiplets necessarily occur embedded in SO10 representations.

Thus the Q values of the [16] representation on the right han side of eq. 21 translate to

[16] = {1} 5 + {10} 1 +
{
5
}
−3

(23)

The sequence of Q values : Q = 5 , 1 ,−3 as arranged in the sequence on the right hand side of eq.

23 – decreasing in steps of 4 – is related to the properties of binomial coefficients(
10

n

)
for n = 0 , 4 , 8 and n = 10 , 6 , 2 (24)

with D ( S U5 ) equivalenced with the dimension of the representation. The suffix Q is added in eq.

22, since in the present context SU5 multiplets necessarily occur embedded in SO10 representations.

This is derived in ref. 4 – [4-2008] .

It is instructive to decompose the Q-value pattern in eq. 21 into an S U2 L+R invariant part and the

remainder proportional to I 3 L+R⎛⎜⎜⎜⎜⎜⎝ 1 1 1 −3 | 5 1 1 1

1 1 1 −3 | 1 −3 −3 −3

⎞⎟⎟⎟⎟⎟⎠ =⎛⎜⎜⎜⎜⎜⎝ 1 1 1 −3 | 3 −1 −1 −1

1 1 1 −3 | 3 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎠ +⎛⎜⎜⎜⎜⎜⎝ 0 0 0 0 | 2 2 2 2

0 0 0 0 | −2 −2 −2 −2

⎞⎟⎟⎟⎟⎟⎠
(25)

From eq. 25 we obtain the identification of the spin10 Cartan subalgebra hermitian components

( charges )

Q = 3 ( B − L ) − 4 I 3 R (26)

In eq. 26 B and L denote baryon and lepton number respectively .

Two remarks shall follow , concerning the recognizable key features inherent to spontaneous gauge

breaking of an enveloping gravitationless gauge field theory , based on a gauge group G env = spin10

1) primary gauge breakdown

must be much different than on the lowest – i.e. electroweak – scale level pertaining to G S M =

S U3 c × S U2 L × U1 Y .

This is so because empirically well established candidate symmetries , like baryon and lepton number

conservation are broken on the primary level and imply very large scale of unification M env =

O
(

10 16 GeV
)

.

As examples let me quote the upper limits of the μ + → e + γ and μ + → e + + e + e − branching

fractions

Br ( μ + → e + + γ ) < 2.4 . 10 −12

Br ( μ + → e + + e + e − ) < 1.0 . 10 −12 in ref. 11 – [13-2013]
(27)
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2) the power of the set of scalar fields

involved in primary gauge breaking does not follow any principle of minimal selection of spin10

representations pertaining to scalar fields .

specific notation for scalar field variables

We proceed defining notation for scalar field variables suitable for primary gauge breaking

{ z } = z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
D (1) , ⊗ n 1

)
(
D (2) , ⊗ n 2

)
(
· · · , ⊗ · · ·

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ | broken down to real coordinates (28)

In eq. 28 D (ν) ; ν = 1, 2, · · · denote a complete set of unitary irreducible representations of spin10 ,

finite dimensional; constructively defined through the method of Peter and Weyl [14-1927] .

n ν stands for the multiplicity of a given representation D (ν) .

For D (ν) , D (ν)
beeing a pair of inequivalent , relative complex conjugate representations the coor-

dinates

z
(
D (ν)

)
, z

(
D (ν)

)
broken down to real and imaginary parts count as 2 (complex) dim ( D ) components over real

numbers. This is the meaning of the attribute ’broken down to real coordinates’ on the right hand side

of eq. 28 .

Thus choosing real values for the components of z ∈ R M as defined in eq. 28 it follows

z = ( z 1 , · · · , z r , · · · , z M ) ; z r : hermitian fields (29)

we find

M =
∑

ν n ν

⎧⎪⎪⎨⎪⎪⎩ dim
(
D (ν)

)
for D (ν) real

2 complex dim
(
D (ν)

)
for D (ν) complex

⎫⎪⎪⎬⎪⎪⎭ < ∞ (30)

to get an idea of the power of the set of scalars

We illustrate the order of M , in eqs. 29 , 30 by the representations of the fermion bilinears from left

and right chiral bases, adapting the scalar variables to their definition in eq. 29 , allowing for complex

linear combinations applied to complex representations ( from section E and ref. 4 – [4-2008] ) .

H f ermion mass ←−(
z

126 F G
)
ξ

( f a 16 F ) γ̇ ( f b 16 G ) γ̇ C

(
126

ξ

16

a

16

b

)
+ h.c.

(
z

126 F G
)
ξ

: (pseudo-) scalar fields in the 126 representation of SO10

F , G = I, II, III : fermion family indices

(31)
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In eq. 31 C

(
126

ξ

16

a

16

b

)
denotes the spin10 Clebsch-Gordan coefficients projecting the product of two ( fermionic ) 16 repre-

sentations on irreducible spin10 representations .

We reproduce the 4 product representations of 16 and 16 representations from ref. 4 ( Appendix E )

= [4-2008] )

[16]
[
16
]

[16] s :
[10] +

[126]
, a : [120]

[1] + [45] +

[210 ][
16
] [1] + [45] +

[210 ]
s :

[10] +[
126

] , a : [120]

(32)

The real and complex representations in the multiplication table in eq. 32 are denoted D R , D C

respectively

D R : [10] R , [120] R , [1] R , [45] R , [210 ] R

D C : [126] C ,
[
126

]
C

(33)

Choosing minimally multiplicities 2 for real and 1 for complex representations in eqs. 32 and 33

yields

M = 772 + 252 = 1028 (34)

We conclude from the example multiplicities leading to eq. 34

M ≥ O ( 1000 ) (35)

2-1-a Primary gauge breaking - type a)

The gauge breaking in type a) gravitationless gauge field theory is

1) driven

by pre-established quadratic, cubic and quartic scaler field self interactions

2) not reducible to semiclassical approximation

for vacuum expected values for scalar variables and their composite operators, necessarily include

gauge variant ones in order to qualify for gauge breaking

For clarity let me remark that condition 2) above is necessary, since in the case of exclusively gauge

invariant vev’s for composite scalar operators they are part of an alternative case – in conjunction

with other gauge invariant composite field variables – of spontaneous mass generation without gauge

breaking. This will be discussed within QCD with 3 light flavors – without scalars – elsewhere .

2-1-b - Primary gauge breaking - type b)

The gauge breaking in type b) gravitationless gauge field theory is

1) driven

by pre-established quadratic, cubic and quartic scaler field self interactions like in type a)
2) reducible to semiclassical approximation

for vacuum expected values for scalar variables and their composite operators. This is the usual case

discussed in the literature, as e.g. in refs. 10 = [10-1013] – and 15 = [15-2013] , while in the latter

reference the main topic is electroweak gauge breaking .
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The semiclassical approximation – with respect to vev’s of scalar fields and their composite local

operators as well as composite operators involving other fields – means

〈 Ω | f
(

z
)
| Ω 〉 = f ( 〈 Ω | z | Ω 〉 ) (36)

E The spin10 product representations
(

16 ⊕ 16
)
⊗

(
16 ⊕ 16

)
We follow the spin10 decomposition discussed in section 2-1 ( eq. 37 repeated below )

spin10 → SU5 × U1 J 5
(37)

Further let us denote representations of spin10 as opposed to those pertaining to SU5 and associated

J 5 quantum number by

spin10 : [dim] ; SU5 × U1 J 5
: {dim} J 5

(38)

Thus we obtain

[16] = {1} +5 + {10} +1 +
{
5
}
−3[

16
]
= {1} −5 +

{
10
}
−1
+ {5} +3

(39)

In turn SU5 representations shall be decomposed along the standard model gauge group SU3 c ⊗
SU2 L ⊗ U1 Y , where Y denotes the electroweak hypercharge

(
with a factor 1

2
included

)
Y = Q e.m. / e − I 3 L (40)

{dim} → ∑ ]
(dimSU3 c , dimSU2 L) Y

[
(41)

The brackets on the right hand side of eq. 41 are reversed in order not to confuse spin10 - and standard

model representations.

Then the base 16
(

16
)

decompose to

[16] →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{1} +5 →
{ ]

(1 , 1) 0

[ }
+5

{10} +1 →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

]
(3 , 2) + 1

6

[
+](

3 , 1
)
− 2

3

[
+

](1 , 1) +1 [

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+1

{
5
}
−3

→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
](

3 , 1
)
+ 1

3

[
+]

(1 , 2) − 1
2

[
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
−3

(42)

The product representations
(

16 ⊕ 16
)
⊗

(
16 ⊕ 16

)
generate all SO10 antysymmetric tensor

ones, of which we encountered the fivefold antisymmetric in section 2-1 .

To elaborate we specify the n-fold antisymmetric tensors obtained from the 10-representation of SO10

[ t 0 ] ∼ 1

[ t 1 ] A ∼ z A ; A = 1, 2, · · · , 10 ↔ [ t 1 ] =
{

5
}

2
⊕ { 5 } −2

[ t 2 ] [A 1 A 2] ∼ 1
2

(
z

A 1

1
z

A 2

2
− z

A 2

1
z

A 1

2

)
· · ·

[ t n ] [A 1 A 2···A n] ∼ 1
n!

∑
sgn

(
1 · · · n

π 1 · · · π n

)
z

A π1

1
z

A π2

2
· · · z

A πn
n

n ≤ 10

(43)
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The quantities [ t n ] defined in eq. 43 form irreducible real representations of SO10 , except for n =

5 , which is composed of the relatively complex irreducible representations 126 and 126 .

The tenfold antisymmetric invariant corresponds to [ t n=10 ] . The product of two full Clifford alge-

bras pertaining to spin10 contains all [ t n ] ; n = 0 · · · 10 representations exactly once .

Treating the n = 5 tensor as one representation – it is reducible only over C – the dimensions of the

[ t n ] representations follow Pascal’s triangle .

[ t 0 ] [ t 2 ] [ t 4 ] [ t 6 ] [ t 8 ] [ t 10 ]

[ t 1 ] [ t 3 ] [ t 5 ] [ t 7 ] [ t 9 ]

1 45 210 210 45 1

10 120 252 120 10

(44)

This corresponds to the following products of 16 + 16

[16]
[
16
]

[16] s :
[10] +

[126]
, a : [120]

[1] + [45] +

[210 ][
16
] [1] + [45] +

[210 ]
s :

[10] +[
126

] , a : [120]

(45)

The correspondence of product representations of the 16 + 16 = 32 associative Clifford algebra with

the sum of antisymmetric tensor ones follows from the completeness of all products of γ matrices

forming the spin10 algebra i.e. are of dimension

( 32 ) 2 =
(

2 5
) 2
= 2 10 (46)

We proceed to reduce the [16] ⊗ [16] product with respect to J 5 , SU5 and SU3 c × SU2L ×U1Y .

The individual products are
(

s (a) : (a)symmetric
)

{1} 5 {10} 1

{
5
}
−3

{1} 5 {1}10 s {10} 6

{
5
}

2

{10} 1 {10} 6

⎛⎜⎜⎜⎜⎜⎜⎝
{
5
}

2
+{

50
}

2

⎞⎟⎟⎟⎟⎟⎟⎠
s

( {
45
}

2

)
a

( {5}−2 +

{45}−2

)
{
5
}
−3

{
5
}
2

( {5}−2 +

{45}−2

) ( {
15
}
−6

)
s

( {
10
}
−6

)
a

(47)
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Decomposing the diagonal {SU5} J 5
representations ( eq. 42 ) yields

( {10} 1 ⊗ {10} 1 ) s =
{
5
}

2
+

{
50
}

2
↓

s
]
(3 , 2) + 1

6

[
+1

](
3 , 1

)
− 2

3

[
+1

](1 , 1) +1 [ +1

]
(3 , 2) + 1

6

[
+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
]
(6 , 3) + 1

3

[
2
+](

3 , 1
)
+ 1

3

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝
]
(8 , 2) − 1

2

[
2
+]

(1 , 2) − 1
2

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ]
(3 , 2) + 7

6

[
2

](
3 , 1

)
− 2

3

[
+1

](
6 , 1

)
− 4

3

[
2

](
3 , 1

)
+ 1

3

[
2

](1 , 1) +1 [ +1 ](1 , 1) +2 [ 2

(48)

( {
5
}
−3

⊗
{
5
}
−3

)
s
=

{
15
}
−6

↓

s

](
3 , 1

)
+ 1

3

[
−3

]
(1 , 2) − 1

2

[
−3](

3 , 1
)
+ 1

3

[
−3

](
6 , 1

)
+ 2

3

[
−6

](
3 , 2

)
− 1

6

[
−6]

(1 , 2) − 1
2

[
−3

](1 , 3) − 1[ −6

↓
complex e.w. triplet coupling to

1
2

(
ν ∗

Ḟ

) α (
ν ∗

Ġ

)
α

(49)

Next we assemble the (anti)symmetric products ( [16] ⊗ [16] ) s = [10] ⊕ [126] and

( [16] ⊗ [16] ) a = [120] with respect to SU5 ⊗ U1 J 5

using eq. 47

( [16] ⊗ [16] ) s = [10] ⊕ [126] ↓

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ {5} −2 +{
5 I

}
2

⎤⎥⎥⎥⎥⎥⎦
⊕
⎡⎢⎢⎢⎢⎢⎢⎣ {1} 10 +

{
5 II

}
2
+ {10} 6 +

{
15
}
−6

+ {45} −2 +
{
50
}

2

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
( [16] ⊗ [16] ) a = [120] ↓

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
{5} −2 +

{
5
}

2

+ {10} 6 +
{
10
}
−6

+ {45} −2 +
{
45
}

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

The roman indices I,II in eq. 50 indicate that appropriate linear combinations of the two
{
5
}

2
representations form parts of [10] and [126] respectively .
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It remains to decompose the SU5 ⊗ U1J5
representations in eq. 50 with respect to SU3 c × SU2L ×

U1Y . We do this associating according to the product representations as they appear in eq. 50

[10] [120] {5} −2

]
(3 , 1) − 1

3

[
+3
+

](
1 , 2

)
+ 1

2

[
+3

[10] [126] [120]
{
5
}
+2

](
3 , 1

)
+ 1

3

[
−3
+

]
(1 , 2) − 1

2

[
+3

[126] {1} +10

]
(1 , 1) 0

[
+10

[126] [120] {10} +6

]
(3 , 2) − 1

6

[
+6
+

](
3 , 1

)
− 2

3

[
+6
+ ](1 , 1) + 1[ +6

[120]
{
10
}
−6

](
3 , 2

)
+ 1

6

[
−6
+

]
(3 , 1) + 2

3

[
−6
+ ](1 , 1) − 1[ −6

(51)

[126]
{
15
}
−6

](
6 , 1

)
+ 2

3

[
−6
+

](
3 , 2

)
− 1

6

[
−6
+ ](1 , 3) − 1[ −6

[126] [120] {45} −2
c.c.�

[120]
{
45
}
+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
]
(6 , 1) + 1

3

[
2
+](

3 , 3
)
+ 1

3

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎝
]
(8 , 2) − 1

2

[
2
+]

(1 , 2) − 1
2

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ +
]
(3 , 2) + 7

6

[
2
+

]
(3 , 1) − 4

3

[
2
+

](
3 , 1

)
+ 1

3

[
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[126]
{
50
}
+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
]
(6 , 3) + 1

3

[
2
+](

3 , 1
)
+ 1

3

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
]
(8 , 2) − 1

2

[
2
+
]
(3 , 2) + 7

6

[
2

+

](
6 , 1

)
− 4

3

[
2
+ ](1 , 1) +2 [ 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

( {10} 1 ⊗ {10} 1 ) s =
{
45
}

2
↓

a
]
(3 , 2) + 1

6

[
+1

](
3 , 1

)
− 2

3

[
+1

](1 , 1) +1 [ +1

]
(3 , 2) + 1

6

[
+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
]
(6 , 1) + 1

3

[
2
+](

3 , 3
)
+ 1

3

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝
]
(8 , 2) − 1

2

[
2
+]

(1 , 2) − 1
2

[
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ]
(3 , 2) + 7

6

[
2

](
3 , 1

)
− 2

3

[
+1

]
(3 , 1) − 4

3

[
2

](
3 , 1

)
+ 1

3

[
2

](1 , 1) +1 [ +1 −−

(53)
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I end the collection of representation decompositions with the adjoint [45] representation of SO10

( [10] ⊗ [10] ) a = [45] ↓

a {5} −2

{
5
}
+2

{5} −2 {10} −4

{ {1} 0 ↔ J 5

{24} 0 ↔ adjoint SU5

}
{
5
}
+2

{
10
}
+4

(54)

It should be noted that despite coinciding dimensions the following entities are most distinct

[10] � {10} −4 , {10} 6 ; [45] � {45} −2 ; · · · (55)

3 Synthesis of ’Beyond the Standard Model Physics’ from the basic of a

unifying gauge theory, in particular spin10

I wish to emphasize in conclusion of the previous derivational sections a few central points here:

1) The timeline of ’Unified theories of leptons and hadrons’, ref. 3 = [3-1975]

Together with Harald Fritzsch we initiated, towards the end of 1973, an in-depth imvestigation into

characteristic features of unified interactions of leptons and quarks, based on an associated gravition-

less simple gauge group.

In November 2014 the closed charm particle J/ψ was discovered, ref. 16 = [16-1974] at BNL with

the reaction p Be → e + e − x and ref. 17 = [17-1974] at SLAC in the reaction e + e − → e + e − x .

In the aftermath of enthusiasm and excitement, accompanied by a plethora of papers trying and for

their majority succeeding to interpret this discovery, we decided to finish the mentioned investigation

without adopting any major topical revisions.

It may be due to these circumstances that the messages contained in ref. 3 = [3-1975] were only

understood in part.

2) gauge bosons completing SO10 beyond S U3 c × S U2 L × U1 Y
The adjoint representation of SO10 can be broken down along the decomposition chain

SO10 → S U5 × U1 J (56)

to yield the quantum numbers

Adj(SO10) =
( {

5
}
+2

⊕ { 5 } −2

)
⊗ a

( {
5
}
+2

⊕ { 5 } −2

)
{

5
}

2
=

] (
3 , 1

)
+ 1

3

[
2
⊕

]
( 1 , 2 ) + 1

2

[
2

(57)

For the product in eq. 57 it thus follows

Adj(SO10) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

]
( 3 , 1 ) + 2

3

[
+4

⊕
] (

3 , 2
)
+ 5

6

[
+4

⊕ ] ( 1 , 1 ) + 1 [ +4 +] (
3 , 1

)
− 2

3

[
−4

⊕
]

( 3 , 2 ) − 5
6

[
−4

⊕ ] ( 1 , 1 ) − 1 [ −4 +

⊕ ]
( 8 , 1 ) 0

]
0 ⊕

] (
3 , 2

)
− 1

6

[
0
⊕

]
( 3 , 2 ) + 1

6

[
0
⊕

⊕ ]
( 1 , 3 ) 0

[
0 ⊕ ]

( 1 , 1 ) 0

[
0 ⊕ ]

( 1 , 1 ) 0

[
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(58)
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Alternatively we can describe the decomposition of Adj(SO10) as displayed in eq. 58 by the irre-

ducible representations of SU5 and the eigenvalues of J

Adj(SO10) =

⎡⎢⎢⎢⎢⎢⎢⎣
{

10
}

4
⊕ { 10 } −4 ⊕

⊕ { 24 } 0 ⊕ { 1 } 0

⎤⎥⎥⎥⎥⎥⎥⎦ ; { 24 } 0 = Adj(SU5) (59)

with the identification through eq. 58{
10

}
+4
=

] (
3 , 1

)
− 2

3

[
−4

⊕
]

( 3 , 2 ) − 5
6

[
−4

⊕ ] ( 1 , 1 ) − 1 [ −4

{ 10 } −4 =
]

( 3 , 1 ) + 2
3

[
+4

⊕
] (

3 , 2
)
+ 5

6

[
+4

⊕ ] ( 1 , 1 ) + 1 [ +4

(60)

and⎛⎜⎜⎜⎜⎜⎝Adj(SU5)

⊕ U1 J

⎞⎟⎟⎟⎟⎟⎠ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
] (

3 , 2
)
− 1

6

[
0
⊕

]
( 3 , 2 ) + 1

6

[
0
⊕]

( 8 , 1 ) 0

[
0 ⊕ ]

( 1 , 3 ) 0

[
0 ⊕ ]

( 1 , 1 ) 0

[
0 ⊕ ]

( 1 , 1 ) 0

[
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(61)

We wish to complement the structure of Adj(SU5) ⊕ U1 J in eq. 61 with the numbers of gauge

bosons first without letting them acquire mass:

⎛⎜⎜⎜⎜⎜⎝Adj(SU5)

⊕ U1 J

⎞⎟⎟⎟⎟⎟⎠ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

# tot # BS M
tot

6 ⊕ 6 12 12

8 | S U3 c ⊕ 3 | S U2 L ⊕ 2 | U1 Y ⊕ U1 J
13 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (62)

Together with the 20 BSM gauge bosons displayed in eq. 60 the total count of these modes , all

necessarily obtaining their mass from the primary breakdown as described in section 2-1 yield 33

gauge bosons → 99 degrees of freedom . Some of them induce baryon- and lepton-number violation

and thus are required to be much heavier than the elcroweak scale – reaching up to approximatively

10 16 GeV .
With this partial characterization of the so induced minimal gauge boson collection beyond the stan-

dard model, we end the corresponding point 2, for the sake of clarity and conciseness of presentation

this ’Synthesis’ section, thereby omitting the (anti-)neutrino mass generation, the first definite detec-

tion of BSM physics.
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