210 research outputs found

    Registration of ‘Hallam’ Wheat

    Get PDF
    ‘Hallam’ (Reg. no. CV-983, PI 638790) is a hard red winter wheat (Triticum aestivum L.) cultivar developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2005 by the developing institutions. Hallam was released primarily for its superior adaptation to rainfed wheat production systems in eastern Nebraska. The name Hallam was chosen to honor Hallam, NE, a town and its people rebuilding after a tornado. Hallam was selected from the cross ‘Brule’ (Schmidt et al., 1983)/‘Bennett’ (Schmidt et al., 1981)//‘Niobrara’ (Baenziger et al., 1996) that was made in 1992. The F1 generation was grown in the greenhouse and the F2 to F3 generations were advanced using the bulk breeding method in the field at Mead, NE. In 1995, single F3:4 rows were planted for selection. Hallam was selected in the F4 and there was no further selection thereafter. Hallam was evaluated as NE98471 in Nebraska yield nurseries starting in 1999, in the Northern Regional Performance Nursery in 2001 and 2002, and in Nebraska cultivar performance trials from 2002 to 2004. In the Nebraska cultivar performance trials, it was narrowly adapted and performs best in eastern Nebraska. The average Nebraska rainfed yield of Hallam of 4110 kg ha-1 (41 environments from 2002 to 2004) was greater than the yields of ‘Wahoo’ (4030 kg ha-1; Baenziger et al., 2002), ‘Alliance’ (3880 kg ha-1; Baenziger et al., 1995), and ‘Harry’ (4000 kg ha-1; Baenziger et al., 2004b), but was lower than ‘Millennium’ (4180 kg ha-1; Baenziger et al., 2001) and ‘Wesley’ (4210 kg ha-1; Peterson et al., 2001). In its primary area of adaptation (eastern Nebraska), Hallam has yielded 4540 kg ha-1 (five environments), which was greater than Wesley (4150 kg ha-1), Millennium (4250 kg ha-1), Wahoo (3940 kg ha-1), and Alliance (3900 kg ha21). In the Northern Regional Performance Nursery, Hallam ranked 14th of 30 in 2001 (12 environments) and fourth of 25 entries in 2002 (13 environments) and averaged 100 kg ha-1 more grain yield than ‘Nekota’ (Haley et al., 1996). Hallam is not recommended for use in irrigated production systems where other wheat cultivars with superior performance, especially with better straw strength (described below), would be recommended. Other measurements of performance from comparison trials show that Hallam is moderately early in maturity (142 d after January 1, five environments), about 2.5 d and 1.2 d earlier flowering than Millennium and Wesley, respectively. Hallam is a semidwarf wheat cultivar. Hallam has a medium short coleoptile (46 mm), as expected for a semidwarf wheat cultivar, and is shorter than ‘Goodstreak’ (61 mm; Baenziger et al., 2004a) and slightly longer than semidwarf wheat cultivars such as Harry (36 mm). The mature plant height of Hallam (86 cm) is 3 cm shorter than Millennium and 6 cm taller than Wesley (41 environments). Hallam has moderate straw strength (45% lodged), similar to Wahoo (46% lodged), but worse than Wesley (34% lodged) in those environments (3) where severe lodging was found. The winter hardiness of Hallamis good to very good, similar to ‘Abilene’ (PI 511307) and comparable to other winter wheat cultivars adapted and commonly grown in Nebraska

    Registration of ‘Hallam’ Wheat

    Get PDF
    ‘Hallam’ (Reg. no. CV-983, PI 638790) is a hard red winter wheat (Triticum aestivum L.) cultivar developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2005 by the developing institutions. Hallam was released primarily for its superior adaptation to rainfed wheat production systems in eastern Nebraska. The name Hallam was chosen to honor Hallam, NE, a town and its people rebuilding after a tornado. Hallam was selected from the cross ‘Brule’ (Schmidt et al., 1983)/‘Bennett’ (Schmidt et al., 1981)//‘Niobrara’ (Baenziger et al., 1996) that was made in 1992. The F1 generation was grown in the greenhouse and the F2 to F3 generations were advanced using the bulk breeding method in the field at Mead, NE. In 1995, single F3:4 rows were planted for selection. Hallam was selected in the F4 and there was no further selection thereafter. Hallam was evaluated as NE98471 in Nebraska yield nurseries starting in 1999, in the Northern Regional Performance Nursery in 2001 and 2002, and in Nebraska cultivar performance trials from 2002 to 2004. In the Nebraska cultivar performance trials, it was narrowly adapted and performs best in eastern Nebraska. The average Nebraska rainfed yield of Hallam of 4110 kg ha-1 (41 environments from 2002 to 2004) was greater than the yields of ‘Wahoo’ (4030 kg ha-1; Baenziger et al., 2002), ‘Alliance’ (3880 kg ha-1; Baenziger et al., 1995), and ‘Harry’ (4000 kg ha-1; Baenziger et al., 2004b), but was lower than ‘Millennium’ (4180 kg ha-1; Baenziger et al., 2001) and ‘Wesley’ (4210 kg ha-1; Peterson et al., 2001). In its primary area of adaptation (eastern Nebraska), Hallam has yielded 4540 kg ha-1 (five environments), which was greater than Wesley (4150 kg ha-1), Millennium (4250 kg ha-1), Wahoo (3940 kg ha-1), and Alliance (3900 kg ha21). In the Northern Regional Performance Nursery, Hallam ranked 14th of 30 in 2001 (12 environments) and fourth of 25 entries in 2002 (13 environments) and averaged 100 kg ha-1 more grain yield than ‘Nekota’ (Haley et al., 1996). Hallam is not recommended for use in irrigated production systems where other wheat cultivars with superior performance, especially with better straw strength (described below), would be recommended. Other measurements of performance from comparison trials show that Hallam is moderately early in maturity (142 d after January 1, five environments), about 2.5 d and 1.2 d earlier flowering than Millennium and Wesley, respectively. Hallam is a semidwarf wheat cultivar. Hallam has a medium short coleoptile (46 mm), as expected for a semidwarf wheat cultivar, and is shorter than ‘Goodstreak’ (61 mm; Baenziger et al., 2004a) and slightly longer than semidwarf wheat cultivars such as Harry (36 mm). The mature plant height of Hallam (86 cm) is 3 cm shorter than Millennium and 6 cm taller than Wesley (41 environments). Hallam has moderate straw strength (45% lodged), similar to Wahoo (46% lodged), but worse than Wesley (34% lodged) in those environments (3) where severe lodging was found. The winter hardiness of Hallamis good to very good, similar to ‘Abilene’ (PI 511307) and comparable to other winter wheat cultivars adapted and commonly grown in Nebraska

    Evaluation of macrophage migration inhibitory factor as an imaging marker for hepatocellular carcinoma in murine models

    Get PDF
    Objective. Macrophage migration inhibitory factor (MIF) is considered as an important mediator in the pathogenesis of neoplasia. The aim of the present study was to evaluate whether MIF could be used as a marker for hepatocellular carcinoma (HCC) detection. Material and methods. Biodistribution and whole-body autoradiography studies of 131I-labeled anti-MIF monoclonal antibody (McAb) and 131I-labeled control IgG were performed. The HCC-bearing mice were injected with 3.7 MBq of each agent and killed at 24, 48, and 72 h postinjection (p.i.). The organs, blood, and HCC tissues were removed from model mice, weighed, and counted using a gamma-counter. The expression of MIF mRNA and protein within HCC tissues was confirmed by RT-PCR and immunohistochemistry. Results. HCCs in model mice could be adequately visualized at 24 h p.i. The target-to-non-target (T/NT) ratios were 6.72 ± 1.09 (24 h), 9.85 ± 0.81 (48 h), and 12.31 ± 0.57 (72 h) for 131I-labeled anti-MIF McAb group, whereas in the control group of 131I-IgG, T/NT ratios were 4.65 ± 0.63 (24 h), 6.12 ± 0.60 (48 h), and 8.23 ± 0.35 (72 h) (p < 0.05). MIF mRNA expression was twofold higher in the HCC tissues than in the healthy liver tissues. MIF protein expression was much higher in the HCC tissues than in controls. Conclusions. Our findings suggested that 131I-anti-MIF McAb could be rapidly and specifically localized in tumors. Thus, MIF could be used as a marker for HCC tumor detection

    HCV 6a Prevalence in Guangdong Province Had the Origin from Vietnam and Recent Dissemination to Other Regions of China: Phylogeographic Analyses

    Get PDF
    Recently in China, HCV 6a infection has shown a fast increase among patients and blood donors, possibly due to IDU linked transmission.We recruited 210 drug users in Shanwei city, Guangdong province. Among them, HCV RNA was detected in 150 (71.4%), both E1 and NS5B genes were sequenced in 136, and 6a genotyped in 70. Of the 6a sequences, most were grouped into three clusters while 23% represent emerging strains. For coalescent analysis, additional 6a sequences were determined among 21 blood donors from Vietnam, 22 donors from 12 provinces of China, and 36 IDUs from Liuzhou City in Guangxi Province. Phylogeographic analyses indicated that Vietnam could be the origin of 6a in China. The Guangxi Province, which borders Vietnam, could be the first region to accept 6a for circulation. Migration from Yunnan, which also borders Vietnam, might be equally important, but it was only detected among IDUs in limited regions. From Guangxi, 6a could have further spread to Guangdong, Yunnan, Hainan, and Hubei provinces. However, evidence showed that only in Guangdong has 6a become a local epidemic, making Guangdong the second source region to disseminate 6a to the other 12 provinces. With a rate of 2.737×10⁻³ (95% CI: 1.792×10⁻³ to 3.745×10⁻³), a Bayesian Skyline Plot was portrayed. It revealed an exponential 6a growth during 1994-1998, while before and after 1994-1998 slow 6a growths were maintained. Concurrently, 1994-1998 corresponded to a period when contaminated blood transfusion was common, which caused many people being infected with HIV and HCV, until the Chinese government outlawed the use of paid blood donations in 1998.With an origin from Vietnam, 6a has become a local epidemic in Guangdong Province, where an increasing prevalence has subsequently led to 6a spread to many other regions of China

    Crystal Structure of EHEC Intimin: Insights into the Complementarity between EPEC and EHEC

    Get PDF
    Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Å resolution, together with a mutant (IntN916Y) at 2.6 Å. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7

    Crystal Structure of EHEC Intimin: Insights into the Complementarity between EPEC and EHEC

    Get PDF
    Enterohaemorrhagic E. coli (EHEC) O157:H7 is a primary food-borne bacterial pathogen capable of causing life-threatening human infections which poses a serious challenge to public health worldwide. Intimin, the bacterial outer-membrane protein, plays a key role in the initiating process of EHEC infection. This activity is dependent upon translocation of the intimin receptor (Tir), the intimin binding partner of the bacteria-encoded host cell surface protein. Intimin has attracted considerable attention due to its potential function as an antibacterial drug target. Here, we report the crystal structure of the Tir-binding domain of intimin (Int188) from E. coli O157:H7 at 2.8 Å resolution, together with a mutant (IntN916Y) at 2.6 Å. We also built the structural model of EHEC intimin-Tir complex and analyzed the key binding residues. It suggested that the binding pattern of intimin and Tir between EHEC and Enteropathogenic E. coli (EPEC) adopt a similar mode and they can complement with each other. Detailed structural comparison indicates that there are four major points of structural variations between EHEC and EPEC intimins: one in Domain I (Ig-like domain), the other three located in Domain II (C-type lectin-like domain). These variations result in different binding affinities. These findings provide structural insight into the binding pattern of intimin to Tir and the molecular mechanism of EHEC O157: H7

    Discovery of Pod Shatter-Resistant Associated SNPs by Deep Sequencing of a Representative Library Followed by Bulk Segregant Analysis in Rapeseed

    Get PDF
    Background: Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species. Methodology/Principal Findings: We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450–550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI,0.10) and the resistance bulk (ten F2 plants with SSRI.0.90), and also Solexa sequencingproduced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 ‘simple SNPs ’ were identified, and the statistical significance was evaluated using Fisher’s exact test. There were 70 associated SNPs whose –log10p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region

    Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours

    Get PDF
    The authors would like to thank Karl-Erik Andersson for his valuable comments and Ms. Karen Klein (Research Support Core, Wake Forest School of Medicine) for her editorial assistance with this manuscript.Administrative support: AA. Editorial help: AA. Conceived and designed the experiments: YYZ. Performed the experiments: RL GL YS SB. Analyzed the data: RL GL YS SB XL XZ HL YYZ. Contributed reagents/materials/analysis tools: AA. Wrote the paper: RL GL YYZ.Despite successful approaches to preserve organs, tissues, and isolated cells, the maintenance of stem cell viability and function in body fluids during storage for cell distribution and transportation remains unexplored. The aim of this study was to characterize urine-derived stem cells (USCs) after optimal preservation of urine specimens for up to 24 hours. A total of 415 urine specimens were collected from 12 healthy men (age range 20–54 years old). About 6×104 cells shed off from the urinary tract system in 24 hours. At least 100 USC clones were obtained from the stored urine specimens after 24 hours and maintained similar biological features to fresh USCs. The stored USCs had a “rice grain” shape in primary culture, and expressed mesenchymal stem cell surface markers, high telomerase activity, and normal karyotypes. Importantly, the preserved cells retained bipotent differentiation capacity. Differentiated USCs expressed myogenic specific proteins and contractile function when exposed to myogenic differentiation medium, and they expressed urothelial cell-specific markers and barrier function when exposed to urothelial differentiation medium. These data demonstrated that up to 75% of fresh USCs can be safely persevered in urine for 24 hours and that these cells stored in urine retain their original stem cell properties, indicating that preserved USCs could be available for potential use in cell-based therapy or clinical diagnosis.Yeshttp://www.plosone.org/static/editorial#pee
    corecore