459 research outputs found
A New Lower Bound for Deterministic Truthful Scheduling
We study the problem of truthfully scheduling tasks to selfish
unrelated machines, under the objective of makespan minimization, as was
introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the
current gap of on the approximation ratio of deterministic truthful
mechanisms is a notorious open problem in the field of algorithmic mechanism
design. We provide the first such improvement in more than a decade, since the
lower bounds of (for ) and (for ) by
Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07],
respectively. More specifically, we show that the currently best lower bound of
can be achieved even for just machines; for we already get
the first improvement, namely ; and allowing the number of machines to
grow arbitrarily large we can get a lower bound of .Comment: 15 page
The Frequent Items Problem in Online Streaming under Various Performance Measures
In this paper, we strengthen the competitive analysis results obtained for a
fundamental online streaming problem, the Frequent Items Problem. Additionally,
we contribute with a more detailed analysis of this problem, using alternative
performance measures, supplementing the insight gained from competitive
analysis. The results also contribute to the general study of performance
measures for online algorithms. It has long been known that competitive
analysis suffers from drawbacks in certain situations, and many alternative
measures have been proposed. However, more systematic comparative studies of
performance measures have been initiated recently, and we continue this work,
using competitive analysis, relative interval analysis, and relative worst
order analysis on the Frequent Items Problem.Comment: IMADA-preprint-c
A new method to determine the elastopalstic properties of ductile materials by conical indentation
Based on load-displacement curves, indentation is widely used to extract the elastoplastic properties of materials. It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obtained using plural sharp and deep spherical indenters. In this paper we show that by introducing an additional dimensionless function of DA / A (the ratio of residual area to the area of an indenter profile) in the reverse analysis, the elastoplastic properties of several unknown materials that exhibit visually indistinguishable load-displacement curves can be uniquely determined with a sharp indentation
Multisource noninvasive genetics of brown bears (Ursus arctos) in Greece reveals a highly structured population and a new matrilineal contact zone in southern Europe
In human‐dominated landscapes, connectivity is crucial for maintaining demographically stable mammalian populations. Here, we provide a comprehensive noninvasive genetic study for the brown bear population in the Hellenic Peninsula. We analyze its population structuring and connectivity, estimate its population size throughout its distribution, and describe its phylogeography in detail for the first time. Our results, based on 150 multilocus genotypes and on 244‐bp sequences of the mtDNA control region, show the population is comprised by three highly differentiated genetic clusters, consistent with geographical populations of Pindos, Peristeri, and Rhodope. By detecting two male bears with Rhodopean ancestry in the western demes, we provide strong evidence for the ongoing genetic connectivity of the geographically fragmented eastern and western distributions, which suggests connectivity of the larger East Balkan and Pindos‐Dinara populations. Total effective population size (Ne) was estimated to be 199 individuals, and total combined population size (NC) was 499, with each cluster showing a relatively high level of genetic variability, suggesting that migration has been sufficient to counteract genetic erosion. The mtNDA results were congruent with the microsatellite data, and the three genetic clusters were matched predominantly with an equal number of mtDNA haplotypes that belong to the brown bear Western mitochondrial lineage (Clade 1), with two haplotypes being globally new and endemic. The detection of a fourth haplotype that belongs to the Eastern lineage (Clade 3a1) in three bears from the western distribution places the southernmost secondary contact zone between the Eastern and Western lineages in Greece and generates new hypotheses about postglacial maxima migration routes. This work indicates that the genetic composition and diversity of Europe's low‐latitude fringe population are the outcome of ancient and historical events and highlight its importance for the connectivity and long‐term persistence of the species in the Balkans
The H2020-SPACE-SIPHODIAS project: Space-grade optoelectronic interfaces for photonic digital and analogue very-high-throughput satellite payloads
The EU-SIPhoDiAS project deals with the development of critical photonic building blocks needed for high-performance and low size, weight, and power (SWaP) photonics-enabled Very High Throughput Satellites (VHTS). In this presentation, we report on the design and fabrication activities during the first year of the project concerning the targeted family of digital and microwave photonic components. This effort aims to demonstrate components of enhanced reliability at technology readiness level (TRL) 7. Specifically, with respect to microwave photonic links, we report: (i) the design of Ka and Q-bands analogue photodetectors that will be assembled in compact packages, allowing for very high bandwidth per unit area and (ii) on the design of compact V-band GaAs electro-optic modulator arrays, which use a folded-path optical configuration to manage all fiber interfaces packaged opposite direct in-line RF feeds for ease of board layouts and mass/size benefits. With respect to digital links, we report on the development of 100 Gb/s (4 x 25 Gb/s) digital optical transceiver sub-assemblies developed using flip-chip mounting of electronic and opto-parts on a high-reliability borosilicate substrate. The transceiver chipset developed specifically for this project refers to fully-custom 25 Gb/s radiation hard (RH) VCSEL driver and TIA ICs designed in IHP’s 130 nm SiGe BiCMOS Rad-Hard process
Creating language resources for under-resourced languages: methodologies, and experiments with Arabic
Language resources are important for those working on computational methods to analyse and study languages. These resources are needed to help advancing the research in fields such as natural language processing, machine learning, information retrieval and text analysis in general. We describe the creation of useful resources for languages that currently lack them, taking resources for Arabic summarisation as a case study. We illustrate three different paradigms for creating language resources, namely: (1) using crowdsourcing to produce a small resource rapidly and relatively cheaply; (2) translating an existing gold-standard dataset, which is relatively easy but potentially of lower quality; and (3) using manual effort with appropriately skilled human participants to create a resource that is more expensive but of high quality. The last of these was used as a test collection for TAC-2011. An evaluation of the resources is also presented
Recommended from our members
Turbulent Energy Transfer and Proton-Electron Heating in Collisionless Plasmas
Despite decades of study of high-temperature weakly collisional plasmas, a complete understanding of how energy is transferred between particles and fields in turbulent plasmas remains elusive. Two major questions in this regard are how fluid-scale energy transfer rates, associated with turbulence, connect with kinetic-scale dissipation, and what controls the fraction of dissipation on different charged species. Although the rate of cascade has long been recognized as a limiting factor in the heating rate at kinetic scales, there has not been direct evidence correlating the heating rate with MHD-scale cascade rates. Using kinetic simulations and in situ spacecraft data, we show that the fluid-scale energy flux indeed accounts for the total energy dissipated at kinetic scales. A phenomenology, based on disruption of proton gyromotion by fluctuating electric fields that are produced in turbulence at proton scales, argues that the proton versus electron heating is controlled by the ratio of the nonlinear timescale to the proton cyclotron time and by the plasma beta. The proposed scalings are supported by the simulations and observations.
</p
- …