52,390 research outputs found

    A hybrid algorithm framework for small quantum computers with application to finding Hamiltonian cycles

    No full text
    Recent works have shown that quantum computers can polynomially speed up certain SAT-solving algorithms even when the number of available qubits is significantly smaller than the number of variables. Here we generalise this approach. We present a framework for hybrid quantum-classical algorithms which utilise quantum computers significantly smaller than the problem size. Given an arbitrarily small ratio of the quantum computer to the instance size, we achieve polynomial speedups for classical divide-and-conquer algorithms, provided that certain criteria on the time- and space-efficiency are met. We demonstrate how this approach can be used to enhance Eppstein's algorithm for the cubic Hamiltonian cycle problem, and achieve a polynomial speedup for any ratio of the number of qubits to the size of the graph.Comment: 20+2 page

    Coherent Perfect Absorbers: Time-reversed Lasers

    Full text link
    We show that an arbitrary body or aggregate can be made perfectly absorbing at discrete frequencies if a precise amount of dissipation is added under specific conditions of coherent monochromatic illumination. This effect arises from the interaction of optical absorption and wave interference, and corresponds to moving a zero of the elastic S-matrix onto the real wavevector axis. It is thus the time-reversed process of lasing at threshold. The effect is demonstrated in a simple Si slab geometry illuminated in the 500-900 nm range. Coherent perfect absorbers are novel linear optical elements, absorptive interferometers, which may be useful for controlled optical energy transfer.Comment: 4 pages, 4 figure

    Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures

    Full text link
    We analyze the optical properties of one-dimensional (1D) PT-symmetric structures of arbitrary complexity. These structures violate normal unitarity (photon flux conservation) but are shown to satisfy generalized unitarity relations, which relate the elements of the scattering matrix and lead to a conservation relation in terms of the transmittance and (left and right) reflectances. One implication of this relation is that there exist anisotropic transmission resonances in PT-symmetric systems, frequencies at which there is unit transmission and zero reflection, but only for waves incident from a single side. The spatial profile of these transmission resonances is symmetric, and they can occur even at PT-symmetry breaking points. The general conservation relations can be utilized as an experimental signature of the presence of PT-symmetry and of PT-symmetry breaking transitions. The uniqueness of PT-symmetry breaking transitions of the scattering matrix is briefly discussed by comparing to the corresponding non-Hermitian Hamiltonians.Comment: 10 pages, 10 figure

    Graded reflection equation algebras and integrable Kondo impurities in the one-dimensional t-J model

    Full text link
    Integrable Kondo impurities in two cases of the one-dimensional tJt-J model are studied by means of the boundary Z2{\bf Z}_2-graded quantum inverse scattering method. The boundary KK matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.Comment: 14 pages, RevTe

    Density Dependence of Transport Coefficients from Holographic Hydrodynamics

    Full text link
    We study the transport coefficients of Quark-Gluon-Plasma in finite temperature and finite baryon density. We use AdS/QCD of charged AdS black hole background with bulk-filling branes identifying the U(1) charge as the baryon number. We calculate the diffusion constant, the shear viscosity and the thermal conductivity to plot their density and temperature dependences. Hydrodynamic relations between those are shown to hold exactly. The diffusion constant and the shear viscosity are decreasing as a function of density for fixed total energy. For fixed temperature, the fluid becomes less diffusible and more viscous for larger baryon density.Comment: LaTeX, 1+33 pages, 6 figures, references adde

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    PT-symmetry breaking and laser-absorber modes in optical scattering systems

    Full text link
    Using a scattering matrix formalism, we derive the general scattering properties of optical structures that are symmetric under a combination of parity and time-reversal (PT). We demonstrate the existence of a transition beween PT-symmetric scattering eigenstates, which are norm-preserving, and symmetry-broken pairs of eigenstates exhibiting net amplification and loss. The system proposed by Longhi, which can act simultaneously as a laser and coherent perfect absorber, occurs at discrete points in the broken symmetry phase, when a pole and zero of the S-matrix coincide.Comment: 4 pages, 4 figure

    Theoretical description of time-resolved pump/probe photoemission in TaS\_2: a single-band DFT+DMFT(NRG) study within the quasiequilibrium approximation

    Full text link
    In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS\_2. We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.Comment: (7 pages, 5 figures, proceedings for Coherence and correlations in nanosystems conference, September 5-10, Ustron, Poland
    corecore