76 research outputs found
Cosmological constraints on R-parity violation from neutrino decay
If the neutrino mass is non-zero, as hinted by several experiments, then
R-parity-violating supersymmetric Yukawa couplings can drive a heavy neutrino
decay into lighter states. The heavy neutrino may either decay radiatively into
a lighter neutrino, or it may decay into three light neutrinos through a
Z-mediated penguin. For a given mass of the decaying neutrino, we calculate its
lifetime for the various modes, each mode requiring certain pairs of
R-parity-violating couplings be non-zero. We then check whether the calculated
lifetimes fall in zones allowed or excluded by cosmological requirements. For
the latter case, we derive stringent new constraints on the corresponding
products of R-parity-violating couplings for given values of the decaying
neutrino mass.Comment: 13 pages, Latex, uses axodraw.sty; version to appear in Physical
Review
Recycling universe
If the effective cosmological constant is non-zero, our observable universe
may enter a stage of exponential expansion. In such case, regions of it may
tunnel back to the false vacuum of an inflaton scalar field, and inflation with
a high expansion rate may resume in those regions. An ``ideal'' eternal
observer would then witness an infinite succession of cycles from false vacuum
to true, and back. Within each cycle, the entire history of a hot universe
would be replayed. If there were several minima of the inflaton potential, our
ideal observer would visit each one of these minima with a frequency which
depends on the shape of the potential. We generalize the formalism of
stochastic inflation to analyze the global structure of the universe when this
`recycling' process is taken into account.Comment: 43 pages, 10 figure
How generic is cosmic string formation in SUSY GUTs
We study cosmic string formation within supersymmetric grand unified
theories. We consider gauge groups having a rank between 4 and 8. We examine
all possible spontaneous symmetry breaking patterns from the GUT down to the
standard model gauge group. Assuming standard hybrid inflation, we select all
the models which can solve the GUT monopole problem, lead to baryogenesis after
inflation and are consistent with proton lifetime measurements. We conclude
that in all acceptable spontaneous symmetry breaking schemes, cosmic string
formation is unavoidable. The strings which form at the end of inflation have a
mass which is proportional to the inflationary scale. Sometimes, a second
network of strings form at a lower scale. Models based on gauge groups which
have rank greater than 6 can lead to more than one inflationary era; they all
end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR
Inflation in Supersymmetric Unified Theories
We construct supersymmetric unified models which automatically lead to a
period of inflation. The models all involve a U(1) symmetry which does not
belong to the MSSM. We consider three different types of models depending on
whether this extra U(1) is the subgroup of a non abelian gauge group, is a U(1)
factor belonging to the visible sector or is a U(1) factor belonging to the
hidden sector. Depending on the structure of the unified theory, on the
spontaneous symmetry breaking pattern and on whether we have global or local
supersymmetry, inflation may be driven by the non-vanishing vacuum expectation
value of a F-term or by that of a D-term. In both scenarios cosmic strings form
at the end of inflation, and they have different properties in each model. Both
inflation and cosmic strings contribute to the CMBR temperature anisotropies.
We show that the strings contribute to the 's up to the level of 75 %.
Hence the contribution from strings to the CMBR and to the density
perturbations in the early Universe which lead to structure formation cannot be
neglected. We also discuss a very interesting class of models which involve a
gauge symmetry.Comment: 22 pages, uses Revte
Supersymmetry without R-Parity and without Lepton Number
We investigate Supersymmetric models where neither R parity nor lepton number
is imposed. Neutrino masses can be kept highly suppressed compared to the
electroweak scale if the -terms in the superpotential are aligned with the
SUSY-breaking bilinear -terms. This situation arises naturally in the
framework of horizontal symmetries. The same symmetries suppress the trilinear
R parity violating terms in the superpotential to an acceptable level.Comment: 18 pages, harvma
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Â MJ of fusion for 1.92Â MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …