14,356 research outputs found
Small-mass effects in heavy-to-light form factors
We present the heavy-to-light form factors with two different non-vanishing
masses at next-to-next-to-leading order and study its expansion in the small
mass. The leading term of this small-mass expansion leads to a factorized
expression for the form factor. The presence of a second mass results in a new
feature, in that the soft contribution develops a factorization anomaly. This
cancels with the corresponding anomaly in the collinear contribution. With the
generalized factorization presented here, it is possible to obtain the leading
small-mass terms for processes with large masses, such as muon-electron
scattering, from the corresponding massless amplitude and the soft
contribution.Comment: 20 pages, 4 figures, 1 ancillary file, published versio
Controlled exchange interaction for quantum logic operations with spin qubits in coupled quantum dots
A two-electron system confined in two coupled semiconductor quantum dots is
investigated as a candidate for performing quantum logic operations on spin
qubits. We study different processes of swapping the electron spins by
controlled switching on/off the exchange interaction. The resulting spin swap
corresponds to an elementary operation in quantum information processing. We
perform a direct time evolution simulations of the time-dependent Schroedinger
equation. Our results show that -- in order to obtain the full interchange of
spins -- the exchange interaction should change smoothly in time. The presence
of jumps and spikes in the corresponding time characteristics leads to a
considerable increase of the spin swap time. We propose several mechanisms to
modify the exchange interaction by changing the confinement potential profile
and discuss their advantages and disadvantages
Theory of Spin Hall conductivity in n-doped GaAs
We develop a theory of extrinsic spin currents in semiconductors, resulting
from spin-orbit coupling at charged scatterers, which leads to skew scattering
and side jump contributions to the spin Hall conductance. Applying the theory
to bulk n-GaAs, without any free parameters, we find spin currents that are in
reasonable agreement with recent experiments by Kato et al. [Science 306, 1910
(2004)].Comment: 5 pages, 1 figur
A New Model-Independent Method for Extracting Spin-Dependent Cross Section Limits from Dark Matter Searches
A new method is proposed for extracting limits on spin-dependent WIMP-nucleon
interaction cross sections from direct detection dark matter experiments. The
new method has the advantage that the limits on individual WIMP-proton and
WIMP-neutron cross sections for a given WIMP mass can be combined in a simple
way to give a model-independent limit on the properties of WIMPs scattering
from both protons and neutrons in the target nucleus. Extension of the
technique to the case of a target material consisting of several different
species of nuclei is discussed.Comment: 15 pages, 6 Encapsulated Postscript figure
Replica field theory for a polymer in random media
In this paper we revisit the problem of a (non self-avoiding) polymer chain
in a random medium which was previously investigated by Edwards and Muthukumar
(EM). As noticed by Cates and Ball (CB) there is a discrepancy between the
predictions of the replica calculation of EM and the expectation that in an
infinite medium the quenched and annealed results should coincide (for a chain
that is free to move) and a long polymer should always collapse. CB argued that
only in a finite volume one might see a ``localization transition'' (or
crossover) from a stretched to a collapsed chain in three spatial dimensions.
Here we carry out the replica calculation in the presence of an additional
confining harmonic potential that mimics the effect of a finite volume. Using a
variational scheme with five variational parameters we derive analytically for
d<4 the result R~(g |ln \mu|)^{-1/(4-d)} ~(g lnV)^{-1/(4-d)}, where R is the
radius of gyration, g is the strength of the disorder, \mu is the spring
constant associated with the confining potential and V is the associated
effective volume of the system. Thus the EM result is recovered with their
constant replaced by ln(V) as argued by CB. We see that in the strict infinite
volume limit the polymer always collapses, but for finite volume a transition
from a stretched to a collapsed form might be observed as a function of the
strength of the disorder. For d<2 and for large
V>V'~exp[g^(2/(2-d))L^((4-d)/(2-d))] the annealed results are recovered and
R~(Lg)^(1/(d-2)), where L is the length of the polymer. Hence the polymer also
collapses in the large L limit. The 1-step replica symmetry breaking solution
is crucial for obtaining the above results.Comment: Revtex, 32 page
Neutrino capture by r-process waiting-point nuclei
We use the Quasiparticle Random Phase Approximation to include the effects of
low-lying Gamow-Teller and first forbidden strength in neutrino capture by very
neutron-rich nuclei with N = 50, 82, or 126. For electron neutrinos in what is
currently considered the most likely r-process site the capture cross sections
are two or more times previous estimates. We briefly discuss the reliability of
our calculations and their implications for nucleosynthesis.Comment: 9 pages, 4 figure
Scattering Theory of Current-Induced Spin Polarization
We construct a novel scattering theory to investigate magnetoelectrically
induced spin polarizations. Local spin polarizations generated by electric
currents passing through a spin-orbit coupled mesoscopic system are measured by
an external probe. The electrochemical and spin-dependent chemical potentials
on the probe are controllable and tuned to values ensuring that neither charge
nor spin current flow between the system and the probe, on time-average. For
the relevant case of a single-channel probe, we find that the resulting
potentials are exactly independent of the transparency of the contact between
the probe and the system. Assuming that spin relaxation processes are absent in
the probe, we therefore identify the local spin-dependent potentials in the
sample at the probe position, and hence the local current-induced spin
polarization, with the spin-dependent potentials in the probe itself. The
statistics of these local chemical potentials is calculated within random
matrix theory. While they vanish on spatial and mesoscopic average, they
exhibit large fluctuations, and we show that single systems typically have spin
polarizations exceeding all known current-induced spin polarizations by a
parametrically large factor. Our theory allows to calculate quantum
correlations between spin polarizations inside the sample and spin currents
flowing out of it. We show that these large polarizations correlate only weakly
with spin currents in external leads, and that only a fraction of them can be
converted into a spin current in the linear regime of transport, which is
consistent with the mesoscopic universality of spin conductance fluctuations.
We numerically confirm the theory.Comment: Final version; a tunnel barrier between the probe and the dot is
considered. To appear in 'Nanotechnology' in the special issue on "Quantum
Science and Technology at the Nanoscale
Analysis of ensemble learning using simple perceptrons based on online learning theory
Ensemble learning of nonlinear perceptrons, which determine their outputs
by sign functions, is discussed within the framework of online learning and
statistical mechanics. One purpose of statistical learning theory is to
theoretically obtain the generalization error. This paper shows that ensemble
generalization error can be calculated by using two order parameters, that is,
the similarity between a teacher and a student, and the similarity among
students. The differential equations that describe the dynamical behaviors of
these order parameters are derived in the case of general learning rules. The
concrete forms of these differential equations are derived analytically in the
cases of three well-known rules: Hebbian learning, perceptron learning and
AdaTron learning. Ensemble generalization errors of these three rules are
calculated by using the results determined by solving their differential
equations. As a result, these three rules show different characteristics in
their affinity for ensemble learning, that is ``maintaining variety among
students." Results show that AdaTron learning is superior to the other two
rules with respect to that affinity.Comment: 30 pages, 17 figure
- …
