14,356 research outputs found

    Small-mass effects in heavy-to-light form factors

    Get PDF
    We present the heavy-to-light form factors with two different non-vanishing masses at next-to-next-to-leading order and study its expansion in the small mass. The leading term of this small-mass expansion leads to a factorized expression for the form factor. The presence of a second mass results in a new feature, in that the soft contribution develops a factorization anomaly. This cancels with the corresponding anomaly in the collinear contribution. With the generalized factorization presented here, it is possible to obtain the leading small-mass terms for processes with large masses, such as muon-electron scattering, from the corresponding massless amplitude and the soft contribution.Comment: 20 pages, 4 figures, 1 ancillary file, published versio

    Controlled exchange interaction for quantum logic operations with spin qubits in coupled quantum dots

    Full text link
    A two-electron system confined in two coupled semiconductor quantum dots is investigated as a candidate for performing quantum logic operations on spin qubits. We study different processes of swapping the electron spins by controlled switching on/off the exchange interaction. The resulting spin swap corresponds to an elementary operation in quantum information processing. We perform a direct time evolution simulations of the time-dependent Schroedinger equation. Our results show that -- in order to obtain the full interchange of spins -- the exchange interaction should change smoothly in time. The presence of jumps and spikes in the corresponding time characteristics leads to a considerable increase of the spin swap time. We propose several mechanisms to modify the exchange interaction by changing the confinement potential profile and discuss their advantages and disadvantages

    Theory of Spin Hall conductivity in n-doped GaAs

    Full text link
    We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at charged scatterers, which leads to skew scattering and side jump contributions to the spin Hall conductance. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are in reasonable agreement with recent experiments by Kato et al. [Science 306, 1910 (2004)].Comment: 5 pages, 1 figur

    A New Model-Independent Method for Extracting Spin-Dependent Cross Section Limits from Dark Matter Searches

    Get PDF
    A new method is proposed for extracting limits on spin-dependent WIMP-nucleon interaction cross sections from direct detection dark matter experiments. The new method has the advantage that the limits on individual WIMP-proton and WIMP-neutron cross sections for a given WIMP mass can be combined in a simple way to give a model-independent limit on the properties of WIMPs scattering from both protons and neutrons in the target nucleus. Extension of the technique to the case of a target material consisting of several different species of nuclei is discussed.Comment: 15 pages, 6 Encapsulated Postscript figure

    Replica field theory for a polymer in random media

    Full text link
    In this paper we revisit the problem of a (non self-avoiding) polymer chain in a random medium which was previously investigated by Edwards and Muthukumar (EM). As noticed by Cates and Ball (CB) there is a discrepancy between the predictions of the replica calculation of EM and the expectation that in an infinite medium the quenched and annealed results should coincide (for a chain that is free to move) and a long polymer should always collapse. CB argued that only in a finite volume one might see a ``localization transition'' (or crossover) from a stretched to a collapsed chain in three spatial dimensions. Here we carry out the replica calculation in the presence of an additional confining harmonic potential that mimics the effect of a finite volume. Using a variational scheme with five variational parameters we derive analytically for d<4 the result R~(g |ln \mu|)^{-1/(4-d)} ~(g lnV)^{-1/(4-d)}, where R is the radius of gyration, g is the strength of the disorder, \mu is the spring constant associated with the confining potential and V is the associated effective volume of the system. Thus the EM result is recovered with their constant replaced by ln(V) as argued by CB. We see that in the strict infinite volume limit the polymer always collapses, but for finite volume a transition from a stretched to a collapsed form might be observed as a function of the strength of the disorder. For d<2 and for large V>V'~exp[g^(2/(2-d))L^((4-d)/(2-d))] the annealed results are recovered and R~(Lg)^(1/(d-2)), where L is the length of the polymer. Hence the polymer also collapses in the large L limit. The 1-step replica symmetry breaking solution is crucial for obtaining the above results.Comment: Revtex, 32 page

    Neutrino capture by r-process waiting-point nuclei

    Get PDF
    We use the Quasiparticle Random Phase Approximation to include the effects of low-lying Gamow-Teller and first forbidden strength in neutrino capture by very neutron-rich nuclei with N = 50, 82, or 126. For electron neutrinos in what is currently considered the most likely r-process site the capture cross sections are two or more times previous estimates. We briefly discuss the reliability of our calculations and their implications for nucleosynthesis.Comment: 9 pages, 4 figure

    Scattering Theory of Current-Induced Spin Polarization

    Full text link
    We construct a novel scattering theory to investigate magnetoelectrically induced spin polarizations. Local spin polarizations generated by electric currents passing through a spin-orbit coupled mesoscopic system are measured by an external probe. The electrochemical and spin-dependent chemical potentials on the probe are controllable and tuned to values ensuring that neither charge nor spin current flow between the system and the probe, on time-average. For the relevant case of a single-channel probe, we find that the resulting potentials are exactly independent of the transparency of the contact between the probe and the system. Assuming that spin relaxation processes are absent in the probe, we therefore identify the local spin-dependent potentials in the sample at the probe position, and hence the local current-induced spin polarization, with the spin-dependent potentials in the probe itself. The statistics of these local chemical potentials is calculated within random matrix theory. While they vanish on spatial and mesoscopic average, they exhibit large fluctuations, and we show that single systems typically have spin polarizations exceeding all known current-induced spin polarizations by a parametrically large factor. Our theory allows to calculate quantum correlations between spin polarizations inside the sample and spin currents flowing out of it. We show that these large polarizations correlate only weakly with spin currents in external leads, and that only a fraction of them can be converted into a spin current in the linear regime of transport, which is consistent with the mesoscopic universality of spin conductance fluctuations. We numerically confirm the theory.Comment: Final version; a tunnel barrier between the probe and the dot is considered. To appear in 'Nanotechnology' in the special issue on "Quantum Science and Technology at the Nanoscale

    Analysis of ensemble learning using simple perceptrons based on online learning theory

    Full text link
    Ensemble learning of KK nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these order parameters are derived in the case of general learning rules. The concrete forms of these differential equations are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning and AdaTron learning. Ensemble generalization errors of these three rules are calculated by using the results determined by solving their differential equations. As a result, these three rules show different characteristics in their affinity for ensemble learning, that is ``maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity.Comment: 30 pages, 17 figure
    corecore