A two-electron system confined in two coupled semiconductor quantum dots is
investigated as a candidate for performing quantum logic operations on spin
qubits. We study different processes of swapping the electron spins by
controlled switching on/off the exchange interaction. The resulting spin swap
corresponds to an elementary operation in quantum information processing. We
perform a direct time evolution simulations of the time-dependent Schroedinger
equation. Our results show that -- in order to obtain the full interchange of
spins -- the exchange interaction should change smoothly in time. The presence
of jumps and spikes in the corresponding time characteristics leads to a
considerable increase of the spin swap time. We propose several mechanisms to
modify the exchange interaction by changing the confinement potential profile
and discuss their advantages and disadvantages