29 research outputs found

    Early evolution of the LIM homeobox gene family

    Get PDF
    Background: LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known

    Heterogeneity of Glia in the Retina and Optic Nerve of Birds and Mammals

    Get PDF
    We have recently described a novel type of glial cell that is scattered across the inner layers of the avian retina [1]. These cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and up-regulate the nestin-related intermediate filament transitin. These changes in glial activity correspond with increased susceptibility of neurons to excitotoxic damage. This novel cell-type has been termed the Non-astrocytic Inner Retinal Glia-like (NIRG) cells. The purpose of the study was to investigate whether the retinas of non-avian species contain cells that resemble NIRG cells. We assayed for NIRG cells by probing for the expression of Sox2, Sox9, Nkx2.2, vimentin and nestin. NIRG cells were distinguished from astrocytes by a lack of expression for Glial Fibrilliary Acidic Protein (GFAP). We examined the retinas of adult mice, guinea pigs, dogs and monkeys (Macaca fasicularis). In the mouse retina and optic nerve head, we identified numerous astrocytes that expressed GFAP, S100β, Sox2 and Sox9; however, we found no evidence for NIRG-like cells that were positive for Nkx2.2, nestin, and negative for GFAP. In the guinea pig retina, we did not find astrocytes or NIRG cells in the retina, whereas we identified astrocytes in the optic nerve. In the eyes of dogs and monkeys, we found astrocytes and NIRG-like cells scattered across inner layers of the retina and within the optic nerve. We conclude that NIRG-like cells are present in the retinas of canines and non-human primates, whereas the retinas of mice and guinea pigs do not contain NIRG cells

    Islet-1 Controls the Differentiation of Retinal Bipolar and Cholinergic Amacrine Cells

    Full text link
    West elevation, detail of the corner, depicting corner stair; On 16 October 1834, most of the Palace was destroyed by fire. Only Westminster Hall, the Jewel Tower, the crypt of St Stephen's Chapel and the cloisters survived. A Royal Commission was appointed to study the rebuilding of the Palace and decided that it should be rebuilt on the same site, and that its style should be either Gothic or Elizabethan. A heated public debate over the proposed styles ensued. It was decided that neo-Classical design, similar to that of the White House and Congress in the USA, was to be avoided due to its connotations of revolution and republic. Gothic design embodied conservative values. "On 29 February 1836 the first premium was given to Barry. The great task of rebuilding the Palace was to occupy him for the rest of his life. At his death it was still unfinished and was continued by his son E. M. Barry until 1870. The remarkable features of Barry's design were its confident Gothic detail and ingenious plan, which brilliantly incorporated the remaining medieval buildings into a logical system of circulation. Barry constantly revised and improved his design so that the final result became a uniquely successful masterpiece, which, although in the Gothic style, was designed on classical principles with a system of repeating modules." Source: Grove Art Online; http://www.groveart.com/ (accessed 1/25/2008

    Genetic modulation of horizontal cell number in the mouse retina

    Get PDF
    Neuronal populations display conspicuous variability in their size among individuals, but the genetic sources of this variation are largely undefined. We demonstrate a large and highly heritable variation in neuron number within the mouse retina, affecting a critical population of interneurons, the horizontal cells. Variation in the size of this population maps to the distal end of chromosome (Chr) 13, a region homologous to human Chr 5q11.1–11.2. This region contains two genes known to modulate retinal cell number. Using conditional knock-out mice, we demonstrate that one of these genes, the LIM homeodomain gene Islet-1 (Isl1), plays a role in regulating horizontal cell number. Genetic differences in Isl1 expression are high during the period of horizontal cell production, and cis-regulation of Isl1 expression within the retina is demonstrated directly. We identify a single nucleotide polymorphism in the 5′ UTR of Isl1 that creates an E-box sequence as a candidate causal variant contributing to this variation in horizontal cell number

    Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of juvenile neuronal ceroid lipofuscinosis

    No full text
    Batten disease, or juvenile neuronal ceroid lipofuscinosis (JNCL), results from mutations in the CLN3 gene. This disorder presents clinically around the age of five years with visual deficits progressing to include seizures, cognitive impairment, motor deterioration, hallucinations, and premature death by the third to forth decade of life. The motor deficits include coordination and gait abnormalities, myoclonic jerks, inability to initiate movements, and spasticity. Previous work from our laboratory has identified an early reduction in catechol-O-methyltransferase (COMT), an enzyme responsible for the efficient degradation of dopamine. Alterations in the kinetics of dopamine metabolism could cause the accumulation of undegraded or unsequestered dopamine leading to the formation of toxic dopamine intermediates. We report an imbalance in the catabolism of dopamine in three month Cln3(-/-) mice persisting through nine months of age that may be causal to oxidative damage within the striatum at nine months of age. Combined with the previously reported inflammatory changes and loss of post-synaptic D1α receptors, this could facilitate cell loss in striatal projection regions and underlie a general locomotion deficit that becomes apparent at twelve months of age in Cln3(-/-) mice. This study provides evidence for early changes in the kinetics of COMT in the Cln3(-/-) mouse striatum, affecting the turnover of dopamine, likely leading to neuron loss and motor deficits. These data provide novel insights into the basis of motor deficits in JNCL and how alterations in dopamine catabolism may result in oxidative damage and localized neuronal loss in this disorder
    corecore