1,184 research outputs found

    Logistic Regression: Tight Bounds for Stochastic and Online Optimization

    Full text link
    The logistic loss function is often advocated in machine learning and statistics as a smooth and strictly convex surrogate for the 0-1 loss. In this paper we investigate the question of whether these smoothness and convexity properties make the logistic loss preferable to other widely considered options such as the hinge loss. We show that in contrast to known asymptotic bounds, as long as the number of prediction/optimization iterations is sub exponential, the logistic loss provides no improvement over a generic non-smooth loss function such as the hinge loss. In particular we show that the convergence rate of stochastic logistic optimization is bounded from below by a polynomial in the diameter of the decision set and the number of prediction iterations, and provide a matching tight upper bound. This resolves the COLT open problem of McMahan and Streeter (2012)

    Beyond Convexity: Stochastic Quasi-Convex Optimization

    Full text link
    Stochastic convex optimization is a basic and well studied primitive in machine learning. It is well known that convex and Lipschitz functions can be minimized efficiently using Stochastic Gradient Descent (SGD). The Normalized Gradient Descent (NGD) algorithm, is an adaptation of Gradient Descent, which updates according to the direction of the gradients, rather than the gradients themselves. In this paper we analyze a stochastic version of NGD and prove its convergence to a global minimum for a wider class of functions: we require the functions to be quasi-convex and locally-Lipschitz. Quasi-convexity broadens the con- cept of unimodality to multidimensions and allows for certain types of saddle points, which are a known hurdle for first-order optimization methods such as gradient descent. Locally-Lipschitz functions are only required to be Lipschitz in a small region around the optimum. This assumption circumvents gradient explosion, which is another known hurdle for gradient descent variants. Interestingly, unlike the vanilla SGD algorithm, the stochastic normalized gradient descent algorithm provably requires a minimal minibatch size

    On Graduated Optimization for Stochastic Non-Convex Problems

    Full text link
    The graduated optimization approach, also known as the continuation method, is a popular heuristic to solving non-convex problems that has received renewed interest over the last decade. Despite its popularity, very little is known in terms of theoretical convergence analysis. In this paper we describe a new first-order algorithm based on graduated optimiza- tion and analyze its performance. We characterize a parameterized family of non- convex functions for which this algorithm provably converges to a global optimum. In particular, we prove that the algorithm converges to an {\epsilon}-approximate solution within O(1/\epsilon^2) gradient-based steps. We extend our algorithm and analysis to the setting of stochastic non-convex optimization with noisy gradient feedback, attaining the same convergence rate. Additionally, we discuss the setting of zero-order optimization, and devise a a variant of our algorithm which converges at rate of O(d^2/\epsilon^4).Comment: 17 page

    Optimal Rates for Bandit Nonstochastic Control

    Full text link
    Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control are foundational and extensively researched problems in optimal control. We investigate LQR and LQG problems with semi-adversarial perturbations and time-varying adversarial bandit loss functions. The best-known sublinear regret algorithm of~\cite{gradu2020non} has a T34T^{\frac{3}{4}} time horizon dependence, and its authors posed an open question about whether a tight rate of T\sqrt{T} could be achieved. We answer in the affirmative, giving an algorithm for bandit LQR and LQG which attains optimal regret (up to logarithmic factors) for both known and unknown systems. A central component of our method is a new scheme for bandit convex optimization with memory, which is of independent interest

    Contextual-based Image Inpainting: Infer, Match, and Translate

    Full text link
    We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into inference and translation as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide the propagation of local textures from the boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions in much smaller space and hence easier to train. We evaluate our method on several public datasets and show that we generate results of better visual quality than previous state-of-the-art methods.Comment: ECCV 2018 camera read

    A Research and Strategy of Remote Sensing Image Denoising Algorithms

    Full text link
    Most raw data download from satellites are useless, resulting in transmission waste, one solution is to process data directly on satellites, then only transmit the processed results to the ground. Image processing is the main data processing on satellites, in this paper, we focus on image denoising which is the basic image processing. There are many high-performance denoising approaches at present, however, most of them rely on advanced computing resources or rich images on the ground. Considering the limited computing resources of satellites and the characteristics of remote sensing images, we do some research on these high-performance ground image denoising approaches and compare them in simulation experiments to analyze whether they are suitable for satellites. According to the analysis results, we propose two feasible image denoising strategies for satellites based on satellite TianZhi-1.Comment: 9 pages, 4 figures, ICNC-FSKD 201

    Complex-valued Retrievals From Noisy Images Using Diffusion Models

    Full text link
    In diverse microscopy modalities, sensors measure only real-valued intensities. Additionally, the sensor readouts are affected by Poissonian-distributed photon noise. Traditional restoration algorithms typically aim to minimize the mean squared error (MSE) between the original and recovered images. This often leads to blurry outcomes with poor perceptual quality. Recently, deep diffusion models (DDMs) have proven to be highly capable of sampling images from the a-posteriori probability of the sought variables, resulting in visually pleasing high-quality images. These models have mostly been suggested for real-valued images suffering from Gaussian noise. In this study, we generalize annealed Langevin Dynamics, a type of DDM, to tackle the fundamental challenges in optical imaging of complex-valued objects (and real images) affected by Poisson noise. We apply our algorithm to various optical scenarios, such as Fourier Ptychography, Phase Retrieval, and Poisson denoising. Our algorithm is evaluated on simulations and biological empirical data.Comment: 11 pages, 7figure

    Multiple breast cancer risk variants are associated with differential transcript isoform expression in tumors.

    Get PDF
    Genome-wide association studies have identified over 70 single-nucleotide polymorphisms (SNPs) associated with breast cancer. A subset of these SNPs are associated with quantitative expression of nearby genes, but the functional effects of the majority remain unknown. We hypothesized that some risk SNPs may regulate alternative splicing. Using RNA-sequencing data from breast tumors and germline genotypes from The Cancer Genome Atlas, we tested the association between each risk SNP genotype and exon-, exon-exon junction- or transcript-specific expression of nearby genes. Six SNPs were associated with differential transcript expression of seven nearby genes at FDR < 0.05 (BABAM1, DCLRE1B/PHTF1, PEX14, RAD51L1, SRGAP2D and STXBP4). We next developed a Bayesian approach to evaluate, for each SNP, the overlap between the signal of association with breast cancer and the signal of association with alternative splicing. At one locus (SRGAP2D), this method eliminated the possibility that the breast cancer risk and the alternate splicing event were due to the same causal SNP. Lastly, at two loci, we identified the likely causal SNP for the alternative splicing event, and at one, functionally validated the effect of that SNP on alternative splicing using a minigene reporter assay. Our results suggest that the regulation of differential transcript isoform expression is the functional mechanism of some breast cancer risk SNPs and that we can use these associations to identify causal SNPs, target genes and the specific transcripts that may mediate breast cancer risk

    Mathematical Modeling of a Bioluminescent E. Coli Based Biosensor

    Get PDF
    In this work we present a mathematical model for the bioreporter activity of an E. coli based bioluminescent bioreporter. This bioreporter is based on a genetically modified E. coli which harbors the recA promoter, a member of the bacterial SOS response, fused to the bacterial luminescence (lux) genes. This bioreporter responds to the presence of DNA damaging agents such as heavy metals, H2O2 and Nalidixic Acid (NA) that activate the SOS response. In our mathematical model we implemented basic physiological mechanisms such as: the penetration of the NA into the biosensor; gyrase enzyme inhibition by the NA; gyrase level regulation; creation of chromosomal DNA damage; DNA repair and release of ssDNA into the cytoplasm; SOS induction and chromosomal DNA repair; activation of lux genes by the fused recA promoter carried on a plasmidal DNA; transcription and translation of the luminescence responsible enzymes; luminescence cycle; energy molecules level regulation and the regulation of the O2 consumption. The mathematical model was defined using a set of ordinary differential equations (ODE) and solved numerically. We simulated the system for different concentrations of NA in water for specific biosensors concentration, and under limited O2 conditions. The simulated results were compared to experimental data and satisfactory matching was obtained. This manuscript presents a proof of concept showing that real biosensors can be modeled and simulated. This sets the ground to the next stage of implementing a comprehensive physiological model using experimentally extracted parameters. Following the completion of the next stage, it will be possible to construct a “Computer Aided Design” tool for the simulation of the genetically engineered biosensors. We define a term “bioCAD” for a Biological System Computer Aided Design. The specific bioCAD that is described here is aimed towards whole cell biosensors which are under investigation today for functional sensing. Usage of the bioCAD will improve the biosensors design process and boost their performance. It will also reduce Non Recurring Engineering (NRE) cost and time. Finally, using a parameterized solution will allow fair and quick evaluation of whole cell biosensors for various applications

    Sparsity and cosparsity for audio declipping: a flexible non-convex approach

    Get PDF
    This work investigates the empirical performance of the sparse synthesis versus sparse analysis regularization for the ill-posed inverse problem of audio declipping. We develop a versatile non-convex heuristics which can be readily used with both data models. Based on this algorithm, we report that, in most cases, the two models perform almost similarly in terms of signal enhancement. However, the analysis version is shown to be amenable for real time audio processing, when certain analysis operators are considered. Both versions outperform state-of-the-art methods in the field, especially for the severely saturated signals
    • …
    corecore