19 research outputs found

    Induction of chinook salmon growth hormone promoter activity by the adenosine 3',5'-monophosphate (cAMP)-dependent pathway involves two cAMP- response elements with the CGTCA motif and the pituitary-specific transcription factor Pit-1

    No full text
    In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH 4ZR 7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2- specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH 4ZR 7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH-.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a vital thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene. The interactions between CREs and the transcription factor Pit-1 in mediating GH gene expression were also examined. In HeLa cells, a human cervical cancer cell line deficient in Pit-1, both basal and cAMP- induced expression of pGH.CAT were apparent only with the cotransfection of a Pit-1 expression vector. These results taken together indicate that the two CREs in the chinook salmon GH gene are functionally associated with the cAMP- dependent pathway and that their promoter activity is dependent on the presence of Pit-1.published_or_final_versio

    Myelotoxicity of trichothecenes and apoptosis: an in vitro study on human cord blood CD34+ hematopoietic progenitor.

    No full text
    International audiencePrevious studies have revealed that hematological disorders associated with trichothecenes intoxication in humans could result from hematopoiesis inhibition. The most frequent and potent trichothecene mycotoxins are T-2 toxin and deoxynivalenol (DON), respectively. Apoptosis induction by these two toxins was investigated in vitro on human hematopoietic progenitors (CD34+ cells). Hoechst coloration, DNA fragmentation and annexin-V/PI labeling in flow cytometry showed that T-2 toxin, in contrast to DON, induced apoptosis in CD34+ cells. T-2 toxin effect was dose- and time-dependent with a significant increase of apoptotic cells as early as 3h after incubation at 10(-7) M and a maximum reached at 12 h. This observation evidenced the high sensitivity of hematopoietic progenitors to T-2 toxin. The inhibition of T-2 toxin-induced apoptosis by a pan-caspase inhibitor (Z-VAD-fmk) suggested the involvement of caspases. The proportional increase of caspase-3 specific activity (DEVDase) with T-2 toxin concentration confirmed its role in the process. After incubation of CD34+ cells with T-2 toxin, in conditions that induced apoptosis, clonal expansion of granulo-monocytes, erythrocytes and megakaryocytes precursors was dose-dependently inhibited. The hematological effects observed in T-2 toxin mycotoxicosis could then be assigned to hematopoiesis inhibition by apoptosis. Different mechanisms that need to be further elucidated are involved in DON myelotoxicity

    Ligand-Independent Phosphorylation of the Glucocorticoid Receptor Integrates Cellular Stress Pathways with Nuclear Receptor Signaling ▿ †

    No full text
    Glucocorticoids are stress hormones that maintain homeostasis through gene regulation mediated by nuclear receptors. We have discovered that other cellular stressors are integrated with glucocorticoid signaling through a new hormone-independent phosphorylation site, Ser134, on the human glucocorticoid receptor (GR). Ser134 phosphorylation is induced by a variety of stress-activating stimuli in a p38 mitogen-activated protein kinase (MAPK)-dependent manner. Cells expressing a mutant glucocorticoid receptor incapable of phosphorylation at Ser134 (S134A-GR) had significantly altered hormone-dependent genome-wide transcriptional responses and associated hormone-mediated cellular functions. The phosphorylation of Ser134 significantly increased the association of the GR with the zeta isoform of the 14-3-3 class of signaling proteins (14-3-3zeta) on chromatin promoter regions, resulting in a blunted hormone-dependent transcriptional response of select genes. These data argue that the phosphorylation of Ser134 acts as a molecular sensor on the GR, monitoring the level of cellular stress to redirect glucocorticoid-regulated signaling through altered 14-3-3zeta cofactor binding and promoter recruitment. This posttranslational modification allows prior cellular stress signals to dictate the transcriptional response to glucocorticoids
    corecore