6,439 research outputs found
Bimaximal Neutrino Mixing with Discrete Flavour Symmetries
In view of the fact that the data on neutrino mixing are still compatible
with a situation where Bimaximal mixing is valid in first approximation and it
is then corrected by terms of order of the Cabibbo angle, we present examples
where these properties are naturally realized. The models are supersymmetric in
4-dimensions and based on the discrete non-Abelian flavour symmetry S4.Comment: 8 pages, 1 figure; contribution prepared for DISCRETE'10 - Symposium
on Prospects in the Physics of Discrete Symmetrie
Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor
Charge density waves are a common occurrence in all families of high critical
temperature superconducting cuprates. Although consistently observed in the
underdoped region of the phase diagram and at relatively low temperatures, it
is still unclear to what extent they influence the unusual properties of these
systems. Using resonant x-ray scattering we carefully determined the
temperature dependence of charge density modulations in
(Y,Nd)BaCuO for three doping levels. We discovered
short-range dynamical charge density fluctuations besides the previously known
quasi-critical charge density waves. They persist up to well above the
pseudogap temperature T*, are characterized by energies of few meV and pervade
a large area of the phase diagram, so that they can play a key role in shaping
the peculiar normal-state properties of cuprates.Comment: 34 pages, 4 figures, 11 supplementary figure
The PWN torus of PSR J0538+2817 and the Origin of Pulsar Velocities
We find evidence for a faint wind nebula surrounding PSR J0538+2817 in
CXO-ACIS imaging. This object is particularly interesting, as the pulsar
spindown age is largest for any such X-ray PWN. If interpreted as an equatorial
torus, the PWN supports the claimed association with the S147 supernova remnant
and implies good alignment between the pulsar spin and space velocity.
Comparison of the SNR age, X-ray cooling age and characteristic age suggests a
birth spin period of >130ms. In turn, if we accept as causal the alignment of
the linear and angular momenta, this places strong constraints on the origin of
the `kick' at the neutron star birth.Comment: 4 pages, 4 figures, to appear in the Astrophysical Journal Letter
Spitzer-IRAC survey of molecular jets in Vela-D
We present a survey of H2 jets from young protostars in the Vela-D molecular
cloud (VMR-D), based on Spitzer -IRAC data between 3.6 and 8.0 micron. Our
search has led to the identification of 15 jets and about 70 well aligned knots
within 1.2 squared degree. We compare the IRAC maps with observations of the H2
1-0 S(1) line at 2.12 micron, with a Spitzer-MIPS map at 24 and 70 micron, and
with a map of the dust continuum emission at 1.2 mm. We find a association
between molecular jets and dust peaks. The jet candidate exciting sources have
been searched for in the published catalog of the Young Stellar Objects of
VMR-D. We selected all the sources of Class II or earlier which are located
close to the jet center and aligned with it.The association between jet and
exciting source was validated by estimating the differential extinction between
the jet opposite lobes. We are able to find a best-candidate exciting source in
all but two jets. Four exciting sources are not (or very barely) observed at
wavelengths shorter than 24 micron, suggesting they are very young protostars.
Three of them are also associated with the most compact jets. The exciting
source Spectral Energy Distributions have been modeled by means of the
photometric data between 1.2 micron and 1.2 mm. From SEDs fits we derive the
main source parameters, which indicate that most of them are low-mass
protostars. A significant correlation is found between the projected jet length
and the [24] - [70] color, which is consistent with an evolutionary scenario
according to which shorter jets are associated with younger sources. A rough
correlation is found between IRAC line cooling and exciting source bolometric
luminosity, in agreement with the previous literature. The emerging trend
suggests that mass loss and mass accretion are tightly related phenomena and
that both decrease with time.Comment: Accepted by The Astrophysical Journa
Thermodynamic Properties and Phase Transitions in a Mean-Field Ising Spin Glass on Lattice Gas: the Random Blume-Emery-Griffiths-Capel Model
The study of the mean-field static solution of the Random
Blume-Emery-Griffiths-Capel model, an Ising-spin lattice gas with quenched
random magnetic interaction, is performed. The model exhibits a paramagnetic
phase, described by a stable Replica Symmetric solution. When the temperature
is decreased or the density increases, the system undergoes a phase transition
to a Full Replica Symmetry Breaking spin-glass phase. The nature of the
transition can be either of the second order (like in the
Sherrington-Kirkpatrick model) or, at temperature below a given critical value,
of the first order in the Ehrenfest sense, with a discontinuous jump of the
order parameter and accompanied by a latent heat. In this last case coexistence
of phases takes place. The thermodynamics is worked out in the Full Replica
Symmetry Breaking scheme, and the relative Parisi equations are solved using a
pseudo-spectral method down to zero temperature.Comment: 24 pages, 12 figure
- …