619 research outputs found

    Energy Conservation Constraints on Multiplicity Correlations in QCD Jets

    Get PDF
    We compute analytically the effects of energy conservation on the self-similar structure of parton correlations in QCD jets. The calculations are performed both in the constant and running coupling cases. It is shown that the corrections are phenomenologically sizeable. On a theoretical ground, energy conservation constraints preserve the scaling properties of correlations in QCD jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on ftp://www.inln.unice.fr

    Verifiable Model of Neutrino Masses from Large Extra Dimensions

    Get PDF
    We propose a new scenario of neutrino masses with a Higgs triplet (ξ++,ξ+,ξ0)(\xi^{++},\xi^+,\xi^0) in a theory of large extra dimensions. Lepton number violation in a distant brane acts as the source of a very small trilinear coupling of ξ\xi to the standard Higgs doublet in our brane. Small realistic Majorana neutrino masses are \underline{naturally} obtained with the fundamental scale MO(1)M_* \sim {\cal O}(1) TeV, foretelling the possible discovery of ξ\xi (m_\xi\lsim M_*) at future colliders. Decays of ξ++\xi^{++} into same-sign dileptons are fixed by the neutrino mass matrix. Observation of μe\mu-e conversion in nuclei is predicted.Comment: A comment on Tevatron reach and two references added. Discussion and conclusions unchange

    Dijet resonances, widths and all that

    Get PDF
    The search for heavy resonances in the dijet channel is part of the on-going physics programme, both at the Tevatron and at the LHC. Lower limits have been placed on the masses of dijet resonances predicted in a wide variety of models. However, across experiments, the search strategy assumes that the effect of the new particles is well-approximated by on-shell production and subsequent decay into a pair of jets. We examine the impact of off-shell effects on such searches, particularly for strongly interacting resonances.Comment: Version published in JHE

    Degenerate Dirac Neutrinos

    Get PDF
    A simple extension of the standard model is proposed in which all the three generations of neutrinos are Dirac particles and are naturally light. We then assume that the neutrino mass matrix is diagonal and degenerate, with a few eV mass to solve the dark matter problem. The self energy radiative corrections, however, remove this degeneracy and allow mixing of these neutrinos. The electroweak radiative corrections then predict a lower bound on the νμνe\nu_\mu - \nu_e mass difference which solves the solar neutrino problem through MSW mechanism and also predict a lower bound on the ντνμ\nu_\tau - \nu_\mu mass difference which is just enough to explain the atmospheric neutrino problem as reported by super Kamiokande.Comment: 11 pages latex fil

    Sfermion Pair Production in Polarized and Unpolarized γγ\gamma\gamma Collisions

    Full text link
    We calculate total and differential cross sections for the production of sfermion pairs in photon-photon collisions, including contributions from resolved photons and arbitrary photon polarization. Sfermion production in photon collisions depends only on the sfermion mass and charge. It is thus independent of the details of the SUSY breaking mechanism, but highly sensitive to the sfermion charge. We compare the total cross sections for bremsstrahlung, beamstrahlung, and laser backscattering photons to those in e+ee^+e^- annihilation. We find that the total cross section at a polarized photon collider is larger than the e+ee^+e^- annihilation cross section up to the kinematic limit of the photon collider.Comment: 19 pages, Latex, 18 (e)ps-figure

    CP Violation in the Top-Quark Pair Production at a Next Linear Collider

    Get PDF
    We provide a detailed, model-independent, study for CP violation effects due to the T-odd top-quark electric dipole moment (EDM) and weak dipole moment (WDM) in the top-quark pair production via e+ee^+e^- and two-photon annihilation at a next e+ee^+e^- linear collider (NLC). There are two methods in detecting CP violation effects in these processes. One method makes use of measurements of various spin correlations in the final decay products of the produced top-quark pair, while the other is to measure various CP-odd polarization asymmetry effects of the initial states. In the e+ee^+e^- case only the first method can be used, and in the γγ\gamma\gamma case both methods can be employed. We provide a complete classification of angular correlations of the tt and tˉ\bar{t} decay products under CP and CP\tilde{T} which greatly faciliate CP tests in the e+ee^+e^- mode. Concentrating on the second method with the Compton back-scattered high-energetic laser light off the electron or positron beam in the two-photon mode, we construct two CP-odd and CP\tilde{T}-even initial polarization configurations and apply them to investigating CP-violating effects due to the top-quark EDM. With a typical set of experimental parameters at the NLC, we compare the 1-\sigma sensitivities to the top-quark EDM and WDM in the e+ee^+e^- mode and the two-photon mode. Some model expectation values of the T-odd parameters are compared with the results.Comment: 45 pages(LaTeX), 10 eps figures, uses epsfig.st

    Lepton flavor violating signals of a little Higgs model at the high energy linear e+ee^{+}e^{-} colliders

    Get PDF
    Littlest Higgs (LH)(LH) model predicts the existence of the doubly charged scalars Φ±±\Phi^{\pm\pm}, which generally have large flavor changing couplings to leptons. We calculate the contributions of Φ±±\Phi^{\pm\pm} to the lepton flavor violating (LFV)(LFV) processes liljγl_{i}\to l_{j}\gamma and liljlklkl_{i}\to l_{j}l_{k}l_{k}, and compare our numerical results with the current experimental upper limits on these processes. We find that some of these processes can give severe constraints on the coupling constant YijY_{ij} and the mass parameter MΦM_{\Phi}. Taking into account the constraints on these free parameters, we further discuss the possible lepton flavor violating signals of Φ±±\Phi^{\pm\pm} at the high energy linear e+ee^{+}e^{-} collider (ILC)(ILC) experiments. Our numerical results show that the possible signals of Φ±±\Phi^{\pm\pm} might be detected via the subprocesses e±e±l±l±e^{\pm}e^{\pm}\to l^{\pm}l^{\pm} in the future ILCILC experiments.Comment: 16 pages, 7 figures. Discussions and references added, typos correcte

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    New CP Violation in Neutrino Oscillations

    Get PDF
    Measurements of CP--violating observables in neutrino oscillation experiments have been studied in the literature as a way to determine the CP--violating phase in the mixing matrix for leptons. Here we show that such observables also probe new neutrino interactions in the production or detection processes. Genuine CP violation and fake CP violation due to matter effects are sensitive to the imaginary and real parts of new couplings. The dependence of the CP asymmetry on source--detector distance is different from the standard one and, in particular, enhanced at short distances. We estimate that future neutrino factories will be able to probe in this way new interactions that are up to four orders of magnitude weaker than the weak interactions. We discuss the possible implications for models of new physics.Comment: ReVTeX, 28 pages, 7 figues. v2: Modifications in section VIII to reflect the fact that some of the couplings that were discussed in this section are irrelevant to our analysis (as pointed out in hep-ph/0112329); Added a discussion in section IX of the relevance of other future experiments that will search for lepton flavor violatio
    corecore