48 research outputs found

    Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition

    Full text link
    We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, non-linear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.Comment: 4 pages, 4 figure

    Hypnotic analgesia reduces brain responses to pain seen in others.

    Get PDF
    Brain responses to pain experienced by oneself or seen in other people show consistent overlap in the pain processing network, particularly anterior insula, supporting the view that pain empathy partly relies on neural processes engaged by self-nociception. However, it remains unresolved whether changes in one's own pain sensation may affect empathic responding to others' pain. Here we show that inducing analgesia through hypnosis leads to decreased responses to both self and vicarious experience of pain. Activations in the right anterior insula and amygdala were markedly reduced when participants received painful thermal stimuli following hypnotic analgesia on their own hand, but also when they viewed pictures of others' hand in pain. Functional connectivity analysis indicated that this hypnotic modulation of pain responses was associated with differential recruitment of right prefrontal regions implicated in selective attention and inhibitory control. Our results provide novel support to the view that self-nociception is involved during empathy for pain, and demonstrate the possibility to use hypnotic procedures to modulate higher-level emotional and social processes

    The low-lying excitations of polydiacetylene

    Full text link
    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure

    Attention or instruction: do sustained attentional abilities really differ between high and low hypnotisable persons?

    Get PDF
    Previous research has suggested that highly hypnotisable participants (‘highs’) are more sensitive to the bistability of ambiguous figures—as evidenced by reporting more perspective changes of a Necker cube—than low hypnotisable participants (‘lows’). This finding has been interpreted as supporting the hypothesis that highs have more efficient sustained attentional abilities than lows. However, the higher report of perspective changes in highs in comparison to lows may reflect the implementation of different expectation-based strategies as a result of differently constructed demand characteristics according to one’s level of hypnotisability. Highs, but not lows, might interpret an instruction to report perspective changes as an instruction to report many changes. Using a Necker cube as our bistable stimulus, we manipulated demand characteristics by giving specific information to participants of different hypnotisability levels. Participants were told that previous research has shown that people with similar hypnotisability as theirs were either very good at switching or maintaining perspective versus no information. Our results show that highs, but neither lows nor mediums, were strongly influenced by the given information. However, highs were not better at maintaining the same perspective than participants with lower hypnotisability. Taken together, these findings favour the view that the higher sensitivity of highs in comparison to lows to the bistability of ambiguous figures reflect the implementation of different strategies

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Research Digest

    No full text

    Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs

    Get PDF
    The degree of correspondence between objective performance and subjective beliefs varies widely across individuals. Here we demonstrate that functional brain network connectivity measured before exposure to a perceptual decision task covaries with individual objective (type-I performance) and subjective (type-II performance) accuracy. Increases in connectivity with type-II performance were observed in networks measured while participants directed attention inward (focus on respiration), but not in networks measured during states of neutral (resting state) or exogenous attention. Measures of type-I performance were less sensitive to the subjects’ specific attentional states from which the networks were derived. These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states

    Metacognition of visuomotor decisions in conversion disorder.

    No full text
    Motor conversion disorder (CD) entails genuine disturbances in the subjective experience of patients who maintain they are unable to perform a motor function, despite lack of apparent neurological damage. Abilities by which individuals assess their own capacities during performance in a task are called metacognitive, and distinctive impairment of such abilities is observed in several disorders of self-awareness such as blindsight and anosognosia. In CD, previous research has focused on the recruitment of motor and emotional brain systems, generally linking symptoms to altered limbic-motor interactions; however, metacognitive function has not been studied to our knowledge. Here we tested ten CD patients and ten age-gender matched controls during a visually-guided motor paradigm, previously employed in healthy controls (HC), allowing us to probe for motor awareness and metacognition. Participants had to draw straight trajectories towards a visual target while, unbeknownst to them, deviations were occasionally introduced in the reaching trajectory seen on the screen. Participants then reported both awareness of deviations and confidence in their response. Activity in premotor and cingulate cortex distinguished between conscious and unconscious movement corrections in controls better than patients. Critically, whereas controls engaged the left superior precuneus and middle temporal region during confidence judgments, CD patients recruited bilateral parahippocampal and amygdalo-hippocampal regions instead. These results reveal that distinct brain regions subserve metacognitive monitoring for HC and CD, pointing to different mechanisms and sources of information used to monitor and form confidence judgments of motor performance. While brain systems involved in sensory-motor integration and vision are more engaged in controls, CD patients may preferentially rely on memory and contextual associative processing, possibly accounting for how affect and memories can imbue current motor experience in these patients
    corecore