1,115 research outputs found

    The demand trend of Italian agritourism

    Get PDF
    n/

    Health technology assessment of medical devices: a survey of non-European union agencies.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Cambridge University Press via the DOI in this record.OBJECTIVES: The aim of this study was to review and compare current health technology assessment (HTA) activities for medical devices across non-European Union HTA agencies. METHODS: HTA activities for medical devices were evaluated from three perspectives: organizational structure, processes, and methods. Agencies were primarily selected upon membership of existing HTA networks. The data collection was performed in two stages: stage 1-agency Web-site assessment using a standardized questionnaire, followed by review and validation of the collected data by a representative of the agency; and stage 2-semi-structured telephone interviews with key informants of a sub-sample of agencies. RESULTS: In total, thirty-six HTA agencies across twenty non-EU countries assessing medical devices were included. Twenty-seven of thirty-six (75 percent) agencies were judged at stage 1 to have adopted HTA-specific approaches for medical devices (MD-specific agencies) that were largely organizational or procedural. There appeared to be few differences in the organization, process and methods between MD-specific and non-MD-specific agencies. Although the majority (69 percent) of both categories of agency had specific methods guidance or policy for evidence submission, only one MD-specific agency had developed methodological guidelines specific to medical devices. In stage 2, many MD-specific agencies cited insufficient resources (budget, skilled employees), lack of coordination (between regulator and reimbursement bodies), and the inability to generalize findings from evidence synthesis to be key challenges in the HTA of medical devices. CONCLUSIONS: The lack of evidence for differentiation in scientific methods for HTA of devices raises the question of whether HTA needs to develop new methods for medical devices but rather adapt existing methodological approaches. In contrast, organizational and/or procedural adaptation of existing HTA agency frameworks to accommodate medical devices appear relatively commonplace.This study was supported by a research grant from the European Community’s Seventh Framework Program (FP7 - HEALTH Grant Agreement no. 305694). The sponsor had no role in the study design, collection and analysis of data, writing of the report, or submission of the paper for publication. The authors wish to thank all interviewees and agencies’ assessment forms verifiers for their invaluable contribution to the completion of this study

    ABEMUS: platform specific and data informed detection of somatic SNVs in cfDNA

    Get PDF
    MOTIVATION: The use of liquid biopsies for cancer patients enables the non-invasive tracking of treatment response and tumor dynamics through single or serial blood drawn tests. Next generation sequencing assays allow for the simultaneous interrogation of extended sets of somatic single nucleotide variants (SNVs) in circulating cell free DNA (cfDNA), a mixture of DNA molecules originating both from normal and tumor tissue cells. However, low circulating tumor DNA (ctDNA) fractions together with sequencing background noise and potential tumor heterogeneity challenge the ability to confidently call SNVs. RESULTS: We present a computational methodology, called Adaptive Base Error Model in Ultra-deep Sequencing data (ABEMUS), which combines platform-specific genetic knowledge and empirical signal to readily detect and quantify somatic SNVs in cfDNA. We tested the capability of our method to analyze data generated using different platforms with distinct sequencing error properties and we compared ABEMUS performances with other popular SNV callers on both synthetic and real cancer patients sequencing data. Results show that ABEMUS performs better in most of the tested conditions proving its reliability in calling low variant allele frequencies somatic SNVs in low ctDNA levels plasma samples. AVAILABILITY: ABEMUS is cross-platform and can be installed as R package. The source code is maintained on Github at http://github.com/cibiobcg/abemus and it is also available at CRAN official R repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness

    Get PDF
    OCT4 (Octamer-binding transcription factor 4) is essential for embryonic stem cell self-renewal. Here we show that OCT4 increases the aggressiveness of high-grade serous ovarian cancer (HG-SOC) by inactivating the Retinoblastoma tumor suppressor pathway and enhancing mitotic stability in cancer cells. OCT4 drives the expression of Nuclear Inhibitor of Protein Phosphatase type 1 (NIPP1) and Cyclin F (CCNF) that together inhibit Protein Phosphatase 1 (PP1). This results in pRB hyper-phosphorylation, accelerated cell proliferation and increased in vitro tumorigenicity of ovarian cancer cells. In parallel, OCT4 and NIPP1/CCNF drive the expression of the central Chromosomal Passenger Complex (CPC) components, Borealin, Survivin and the mitotic kinase Aurora B, promoting the clustering of supernumerary centrosomes to increase mitotic stability. Loss of OCT4 or NIPP1/CCNF results in severe mitotic defects, multipolar spindles and supernumerary centrosomes, finally leading to the induction of apoptosis. These phenotypes were recapitulated in different cancer models indicating general relevance for human cancer. Importantly, activation of these parallel pathways leads to dramatically reduced overall survival of HG-SOC patients. Altogether, our data highlights an unprecedented role for OCT4 as central regulator of mitotic fidelity and RB tumor suppressor pathway activity. Disrupting this pathway represents a promising strategy to target an aggressive subpopulation of HG-SOC cells.Oncogene advance online publication, 20 March 2017; doi:10.1038/onc.2017.20

    HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1

    Get PDF
    Background Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. Methods RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. Results Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. Conclusions This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis

    High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids

    Get PDF
    The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets

    Development of an app for lung cancer survivors (iEXHALE) to increase exercise activity and improve symptoms of fatigue, breathlessness and depression

    Get PDF
    Objective. Exercise-based self-management interventions are recommended for lung cancer survivors and can provide physical, psychosocial and emotional relief. Mobile health technologies can encourage self-management; however, currently no cancer-related apps address exercise specific needs of lung cancer survivors. This paper details the design, development and testing of an exercise app for lung cancer survivors (iEXHALE) which aims to increase exercise activity and improve symptoms.   Methods. The research had two stages: 1) focus groups with healthcare professionals, patients and family members (n=21) 2) app development and usability study with lung cancer survivors (n=6). The Capability, Opportunity, Motivation-Behaviour model was used as a theoretical framework; data were thematically analysed. Results. Focus group findings identified many helpful exercises for managing lung cancer survivors’ symptoms. These findings, alongside relevant literature, informed iEXHALE’s content and design. The usability study found that lung cancer survivors valued iEXHALE’s self-management capabilities, but identified potential modifications, including improved self-monitoring diaries and navigation.   Conclusions. iEXHALE’s development has been theoretically and empirically informed, showing value as a self-management tool. Next, we will test its effectiveness, acceptability and cost-effectiveness
    corecore