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Abstract
Motivation: The use of liquid biopsies for cancer patients enables the non-invasive tracking of treatment response 
and tumor dynamics through single or serial blood drawn tests. Next generation sequencing assays allow for the 
simultaneous interrogation of extended sets of somatic single nucleotide variants (SNVs) in circulating cell free 
DNA (cfDNA), a mixture of DNA molecules originating both from normal and tumor tissue cells. However, low 
circulating tumor DNA (ctDNA) fractions together with sequencing background noise and potential tumor 
heterogeneity challenge the ability to confidently call SNVs.
Results: We present a computational methodology, called Adaptive Base Error Model in Ultra-deep Sequencing 
data (ABEMUS), which combines platform-specific genetic knowledge and empirical signal to readily detect and 
quantify somatic SNVs in cfDNA. We tested the capability of our method to analyze data generated using 
different platforms with distinct sequencing error properties and we compared ABEMUS performances with other 
popular SNV callers on both synthetic and real cancer patients sequencing data. Results show that ABEMUS 
performs better in most of the tested conditions proving its reliability in calling low variant allele frequencies 
somatic SNVs in low ctDNA levels plasma samples.
Availability: ABEMUS is cross-platform and can be installed as R package. The source code is maintained on 
Github at http://github.com/cibiobcg/abemus and it is also available at CRAN official R repository.
Contact: f.demichelis@unitn.it and alessandro.romanel@unitn.it 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Liquid biopsy provides an exceptional source of information for the 
identification and measurement of biomarkers relevant to precision 
oncology, from diagnosis and prognosis to treatment selection and 
monitoring of treatment response (Heitzer et al., 2019). Circulating cell 
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free DNA (cfDNA) carries the genomic characteristics of tumor cell 
material shed into the bloodstream. In the presence of metastatic disease 
and/or of multifocal tumors, where single tissue biopsies would fall short 
in allowing heterogeneity assessment, cfDNA represents an ideal 
alternative to capture the disease genomic features. Several studies already 
demonstrated the prognostic value of circulating tumor DNA (ctDNA; the 
fraction of free DNA released from tumor cells as opposed to normal cells) 
and the ability to track tumor dynamics through the analysis of genomic 
lesions detected in the circulation of cancer patients (Annala et al., 2018; 
Bettegowda et al., 2014; Dawson et al., 2013; Sclafani et al., 2018; 
Siravegna et al., 2015; Thierry et al., 2014; Tie et al., 2016; Vietsch et al., 
2017). One outstanding example of the use of liquid biopsy for the 
detection of relevant single-nucleotide variant (SNV) is the FDA approved 
test for EGFR exon 21 L858R substitution mutation in metastatic non-
small cell lung cancer patient (Kwapisz, 2017), approved June 1st 2016. 
While highly sensitive technologies as digital PCR can be used for the 
investigation of SNVs in cfDNA, only next-generation sequencing (NGS) 
approaches allow for the simultaneous interrogation of large sets of 
genomic loci and for the discovery of mutations, with yet restricted 
amount of DNA (10-50ng). In the NGS based cfDNA testing, the perfect 
trade-off between SNV detection performance and sequencing depth is 
key. Specifically, low ctDNA fractions together with potential tumor 
heterogeneity challenge the ability to confidently call SNVs also due to 
the sequencing background noise. We therefore recognized the need for a 
benchmarked widely applicable computational method that combines 
individual’s genetic knowledge and empirical signal to readily detect and 
quantify somatic SNVs in cfDNA also in the presence of low tumor 
fractions. We set up a computational methodology named ABEMUS 
(Adaptive Base Error Model in Ultra-deep Sequencing data) to 
discriminate between true SNVs and artefactual signals by learning locus-
specific and data-driven variant allelic fraction thresholds while 
leveraging platform specific single base resolution information from 
sequencing assays (Figure 1). Performance and results were compared 
across an array of in-silico and real liquid biopsy data (including in-silico 
dilutions) against SNV detection methods commonly used in tumor tissue 
based studies (Cibulskis et al., 2013; Kim et al., 2018; Koboldt et al., 
2012; Larson et al., 2012) or specifically proposed for cfDNA data 
(Kockan et al., 2017).

2 Materials and Methods

2.1 Plasma and germline sequencing data from cancer 
patients

To build different ABEMUS platform specific sequencing error reference 
models and study their properties, we collected germline samples 
sequencing data profiled using 5 platforms (here intended as the 
combination of library preparation kit and sequencing 
machine/chemistry). Specifically, we used both i) whole exome 
sequencing (WES) data from 40 normal samples sequenced both with 
NimbleGen (Roche NimbleGen SeqCap Exome v3, 64Mbp covered) 
(Beltran H, et al, submitted) and with HaloPlex (Agilent HaloPlex Exome, 
36Mbp covered) kits (Beltran et al., 2016), and ii) custom targeted panel 
data from three sets of normal samples (N=20, 113 and 3) sequenced via 
Roche NimbleGen N250 targeted panel, Ion AmpliSeq Targeted Custom 
Amplicon Panel (Carreira et al., 2014; Romanel et al., 2015) or Illumina 
True Seq Custom Amplicon and covering 3.2 Mbp, 40 kbp and 106 kbp, 
respectively (see Supplementary Table 1). Additionally, we queried 118 
plasma samples from 17 metastatic prostate cancer patients (median 

number of plasma samples per patient is 5) profiled on an Ion AmpliSeq 
Targeted Custom Amplicon Panel. The case samples have been previously 
annotated by tumor content (ctDNA) using CLONET (Prandi et al., 2014) 
and by manually curated SNVs calls (Carreira et al., 2014).

2.2 Data pre-processing for ABEMUS computations 
Pileup data (PILEUP files) were generated using PaCBAM (Valentini et 
al., 2019) to obtain depth of coverage and allele-specific statistics at each 
considered locus. Genomic positions with variant allelic fraction greater 
than zero are available in *.pabs PaCBAM output files. Sequencing reads 
with read and base qualities ≥ 20 were retained in the pileup computation. 

2.3 Global and local estimations of sequencing errors
Given a set of germline samples profiled with the same platform, 
cumulative PILEUP across all samples for all targeted genomic positions 
is computed. PILEUP data is used by ABEMUS to build the overall 
distribution of variant allelic fractions (AFs) observed in the set of 
germline samples (global sequencing error distribution, ) and to 𝐺𝑆𝐸
compute a locus-specific measure (per-base error measure). The  is 𝐺𝑆𝐸
used to determine a coverage-independent AF threshold ( ) and a 𝐴𝐹𝑡ℎ

coverage-dependent AF threshold ( ). Given a desired level of 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

specificity (user defined, default 0.995), the  value is computed as the 𝐴𝐹𝑡ℎ

corresponding quantile of the , while  values are similarly 𝐺𝑆𝐸 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

computed stratified by depth of coverage bins. Formally,

𝐴𝐹𝑡ℎ =  𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐺𝑆𝐸,𝑠)
𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐺𝑆𝐸𝑐𝑜𝑣_𝑏𝑖𝑛,𝑠)

where  is the desired detection specificity (0 ≤ s ≤ 1), and 𝑠 𝐺𝑆𝐸𝑐𝑜𝑣_𝑏𝑖𝑛

 is the subset of AFs in  with depth of coverage within a bin of ⊆ 𝐺𝑆𝐸 𝐺𝑆𝐸
coverage, .𝑐𝑜𝑣_𝑏𝑖𝑛
The local per-base error measure (pbem) is computed as:

𝑝𝑏𝑒𝑚𝑥 =  
∑𝑁

𝑖 = 1𝑎𝑙𝑡𝑖 𝑥

∑𝑁
𝑖 = 1𝑐𝑜𝑣𝑖 𝑥

where  is a genomic locus,  is the number of sequencing reads 𝑥 𝑎𝑙𝑡
supporting an allele different from the reference,  is the total coverage 𝑐𝑜𝑣
and  the number of germline samples considered.𝑁

2.4 ABEMUS single nucleotide variants calls
Given a plasma sample and pre-computed  and  estimations, the 𝐺𝑆𝐸 𝑝𝑏𝑒𝑚
identification of putative somatic SNVs in the plasma sample is performed 
through two main sequential filtering steps. First, ABEMUS filters 
genomic positions using either the pre-computed coverage-independent 

 or -dependent  thresholds (as determined by user, default 𝐴𝐹𝑡ℎ 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

coverage-dependent ). The former applies the same threshold 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛
across all positions with AF > 0, while the latter applies coverage stratified 
thresholds to each locus  based on the depth of coverage  . 𝑥 𝑐𝑜𝑣𝑥 ∈ 𝑐𝑜𝑣_𝑏𝑖𝑛
Last, for each retained locus, ABEMUS tests the plasma sample locus  𝑥
AF against the corresponding . Since the  is computed on all 𝑝𝑏𝑒𝑚𝑥 𝑝𝑏𝑒𝑚
reads from a panel of germline samples, at a specific locus , the AF 𝑥
threshold  is computed as a function of the  and of the 𝐴𝐹𝑡ℎ𝑝𝑏𝑒𝑚(𝑥) 𝑝𝑏𝑒𝑚𝑥

local plasma sample coverage ( ) as follows:𝑐𝑜𝑣𝑥

𝐴𝐹𝑡ℎ𝑟𝑝𝑏𝑒𝑚(𝑥) = 𝐹(𝑝𝑏𝑒𝑚𝑥, 𝑐𝑜𝑣𝑥) ∗ 𝑅 𝑐𝑜𝑣,𝑡𝑠𝑖𝑧𝑒
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This function returns the maximum AF observed among 100,000 
experiments modelled as binomial distributions  with  𝐵(𝑛,𝑝) 𝑝
corresponding to  and number of trials  corresponding to the locus 𝑝𝑏𝑒𝑚𝑥 𝑛
coverage . This value is then rescaled by a factor  which 𝑐𝑜𝑣𝑥 𝑅 𝑐𝑜𝑣,𝑡𝑠𝑖𝑧𝑒

maximizes ABEMUS precision and recall in plasma samples with global 
mean coverage equal to  and target size equal to .𝑐𝑜𝑣 𝑡𝑠𝑖𝑧𝑒
Further filtering criteria on minimal locus coverage and minimal AF in 
plasma sample can be applied to reflect a-priori user specific 
requirements. Additionally, when matched germline sample data is 
available, filters on minimal locus coverage and maximal AF in matched 
germline sample can be applied. At each computation step, the list of 
genomic loci to be processed is reduced (intermediate and final lists are 
saved). The final list includes the set of putative somatic SNVs for the 
plasma sample.

2.5 Synthetic BAM files generation, preserving real data 
features, coverage and sequencing error

To test ABEMUS performance, synthetic BAM files were generated using 
summary statistics from a collection of human germline samples. 
Specifically, we considered 50 germline BAM files profiled with Agilent 
HaloPlex Exome kit (36Mbp covered) at approximately 200x mean depth 
of coverage (Beltran et al., 2015). Coverage and allele-specific statistics 
across all captured genomic regions were computed and characterized 
both at region and base-specific level. In particular, we computed  𝑝𝑏𝑒𝑚
and the probability distribution , which for each position  in the 𝑃𝑠𝑡𝑎𝑟𝑡 𝑥
panel measures the probability of observing a mapped read with starting 
position in . Synthetic BAM files were obtained from synthetic FASTQ 𝑥
files aligned to the human hg19 reference genome using BWA aligner (Li 
and Durbin, 2009) and were finally processed with SAMtools (Li et al., 
2009). Given a number  of required reads of length  and a set  of 𝑁 𝐿 𝑆
heterozygous SNPs derived from randomly selected European individuals 
from the 1,000 Genomes Project, synthetic FASTQ files were created by 
generating  synthetic reads using the following procedure: 1) select a 𝑁
start alignment position  using the probability distribution ; 2) 𝑐ℎ𝑟:𝑥 𝑃𝑠𝑡𝑎𝑟𝑡

build the read sequence considering the genomic coordinates 
 in the human hg19 reference genome and select an allele 𝑐ℎ𝑟:𝑥,(𝑥 + 𝐿)

with probability 0.5; 3) introduce an error at each read position 𝑐ℎ𝑟:𝑦 ∈
 with a probability reflective of  [𝑐ℎ𝑟:𝑥,𝑐ℎ𝑟:(𝑥 + 𝐿)] max (0.002,  𝑝𝑏𝑒𝑚𝑦)

where 0.002 is the average background error computed from the original 
germline data; 4) introduce the alternative base of a SNP  at genomic 𝑠 ∈ 𝑆
position  if  corresponds to the genomic 𝑐ℎ𝑟:𝑦 ∈ [𝑐ℎ𝑟:𝑥,𝑐ℎ𝑟:(𝑥 + 𝐿)] 𝑐ℎ𝑟:𝑦
position of SNP . If the synthetic data is intended to represent a case 𝑠
sample, an heterozygous SNV  from a set  of pre-selected  𝑚 𝑀
heterozygous SNVs is introduced in a read at position 𝑐ℎ𝑟:𝑦 ∈

 if  corresponds to the genomic position of SNV [𝑐ℎ𝑟:𝑥,𝑐ℎ𝑟:(𝑥 + 𝐿)] 𝑐ℎ𝑟:𝑦
; the SNV is introduced with a probability , where  𝑚 𝑇𝐶 𝑇𝐶 ∈ [0,1]

represents a level of ctDNA. Base quality values in FASTQ files are all 
set to a pre-defined value . Using this procedure, we generated two large 𝑄
datasets of synthetic data, one to optimize ABEMUS performance and one 
to run comparative performance study with other tools.

2.6 Generation of synthetic data to optimize ABEMUS 
performance

Using the previously described procedure we generated a set of 50 
synthetic germline BAM files and a set of 9 plasma-germline synthetic 
BAM file pairs reflective of covering 36Mbp (100% of HaloPlex target) 
at mean coverage of 2000x. Plasma BAM files were generated introducing 

in each sample a different set of 200 clonal heterozygous SNVs and 
mimicking a range of ctDNA values, as 80%, 40%, 20%, 15%, 12.5%, 
10%, 7.5%, 5% and 2.5%. PILEUP data for these samples was calculated 
with PaCBAM and used to generate synthetic input data for ABEMUS 
covering different scenarios of depth of coverage, target size and 
admixture level. Specifically, starting from those PILEUP data and 
adopting a sub-sampling procedure, we generated synthetic input data to 
represent assays with smaller genomic targets (75%, 50%, 25%, 12.5%, 
6%, 3%, 1%, 0.5%, 0.1% corresponding to 26.6, 17.7, 8.9, 4.4, 2.1, 1.1, 
0.4, 0.2, and 0.04 Mbp of the 36 Mbp HaloPlex target, respectively), each 
at multiple mean coverages (50%, 25%, 10% of the original coverage 
corresponding to 1000x, 500x and 200x mean coverage, respectively). 
Combinations of targets (N=10) and coverage levels (N=4) resulted in an 
extended collection of 1,600 synthetic germline input data grouped in 32 
target-coverage classes and 288 synthetic plasma-germline input data also 
grouped in 32 target-coverage classes across nine different levels of 
ctDNA. Case tumor BAM files were generated introducing in each case a 
different set of 200 clonal heterozygous SNVs except for BAM files 
covering 0.2Mbp and 0.04Mbp in which sets of 100 clonal heterozygous 
SNVs were introduced. For all synthetic samples, base qualities were set 
to 20. Generated synthetic reads length was set to 101bp. This dataset is 
referred to as Synthetic Dataset #1.

2.7 Generation of synthetic data for comparative analyses 
with published tools

A second set of plasma and matched germline synthetic BAM files was 
generated to compare ABEMUS performances against published SNV 
detection tools. Three combinations of depth of coverage and target size 
were considered: 1) 2000x mean depth of coverage across 1% HaloPlex 
target; 2) 1000x mean depth of coverage across a 12.5% of HaloPlex 
target; 3) 200x mean depth of coverage across 100% HaloPlex target. For 
each scenario we generated 50 synthetic germline BAM files and a set of 
9 synthetic plasma-germline samples pairs spanning a range of ctDNA 
values (80%, 40%, 20%, 15%, 12.5%, 10%, 7.5%, 5% and 2.5%). Case 
tumor BAM files were generated introducing in each sample a different 
set of 200 clonal heterozygous SNVs. For each plasma sample, two 
synthetic BAM files were generated, considering base qualities set to 20 
and 30. Generated synthetic reads length was set to 101bp. This dataset is 
referred to as Synthetic Dataset #2.

2.8 In-silico dilutions from real cfDNA data for 
comparative analyses with published tools

To further perform comparative analyses with published tools, we created 
in-silico dilutions from real cfDNA and matched normal data, in order to 
control for ctDNA. Briefly, from previously published data (Carreira et 
al., 2014) we selected 41 plasma samples from 8 patients with at least one 
reported somatic SNV and with plasma mean coverage higher than the 
matched germline control sample (Buccal Swab). A computational 
procedure was applied to precisely admix fractions of tumor and germline 
sequencing reads sampled from original BAM files accordingly to the 
intended ctDNA while preserving the original mean depth of coverage. 
Let   be the reported ctDNA level of the plasma sample,  𝑐𝑡𝐷𝑁𝐴𝑖𝑛 𝑐𝑡𝐷𝑁𝐴𝑡𝑎𝑟

be the target ctDNA level,  be the mean coverage of the plasma 𝑐𝑜𝑣𝑝

sample and  be the mean coverage of the germline sample. Then, 𝑐𝑜𝑣𝑔

synthetic dilutions are obtained by mixing a fraction  of plasma data 𝐹𝑝

reads and a fraction  of germline data reads (when  ), with:𝐹𝑔 𝐹𝑔 ≤ 1
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  and  𝐹𝑝 =
𝑐𝑡𝐷𝑁𝐴𝑡𝑎𝑟

𝑐𝑡𝐷𝑁𝐴𝑖𝑛
𝐹𝑔 = (1 ― 𝐹𝑝) ∗

𝑐𝑜𝑣𝑝

𝑐𝑜𝑣𝑔

By applying this procedure, a final set of 291 synthetically diluted samples 
covering a wide range of ctDNA levels (80%, 40%, 20%, 15%, 12.5%, 
10%, 7.5%, 5% and 2.5%) was generated. This dataset, which is hence 
built using a sub-sampling procedure that mixes sequencing reads from 
real cfDNA and matched control samples, is referred to as Synthetic 
Dataset #3.

2.9 ABEMUS parameters used in study experiments and 
data availability

ABEMUS parameters applied in study experiments are listed in 
Supplementary Table 2 and 3. The reference error models of the 
platforms investigated in this study are available at 
http://github.com/cibiobcg/abemus_models.

3 Results

3.1 ABEMUS summary overview
ABEMUS is a tool specifically designed to detect somatic SNVs from 
cfDNA data and is implemented as package in the R environment. The 
identification of somatic SNVs from a plasma sample is performed by 
ABEMUS using locus-specific and data driven filters that are calculated 
exploiting pre-computed reference error models (Figure 1). For each 
experimental platform, here intended as the combination of library 
preparation kit and sequencing machine/chemistry, reference error models 
that estimate both global and local sequencing error background are built 
by ABEMUS from a set of germline samples data generated with the same 
platform. Of note, ABEMUS provides pre-computed reference error 
models for several experimental platforms. When matched germline 
sample data is available for a plasma sample, additional filters can be used 
by ABEMUS to refine the identification of somatic SNVs by further 
considering private SNPs (e.g. singletons).
As a result, ABEMUS nominates a list of putative somatic SNVs in a 
format compatible with external tools providing also functional 
annotations (i.e. Oncotator (Ramos et al., 2015), SnpEff (Cingolani et al., 
2012)) together with additional information like the locus strand bias and 
the genomic context, which altogether can be further used to rank or 
prioritize the identified SNVs.

3.2 pbem is a sequencing platform dependent feature
We tested the hypothesis that sequencing errors, quantified using pbem, 
depend on the experimental platform. To test this hypothesis, we collected 
a series of data of germline samples profiled using different platforms as 
reported in Supplementary Table 1. We first exploited the 113 germline 
samples from the 40kb IonTorrent PGM sequencing series and assessed 
pbem for two disjoint subsets of samples (56 and 57) across all targeted 
genomic loci. The resulting distributions of pbem and coverage were 
comparable and further the pbem correlation (Pearson’s product-moment 
correlation, r = 0.72) indicated agreement between the two sets of base 
level measures (Figure 2A, S1 versus S2). Similarly, two subsets of the 
36Mbp WES assay (Agilent HaloPlex Exome) sequencing series of 10 
germline samples each (Figure 2A, S3 versus S4) and to subsets of the 
3.2Mbp Roche NimbleGen N250 targeted panel sequencing series 
(Figure 2A, S5 versus S6) demonstrated comparable results. On the 
contrary, the same procedure but comparing data generated by two 

platforms (Ion AmpliSeq Targeted Custom Amplicon Panel on IonTorrent 
PGM and Illumina True Seq Custom Amplicon on Illumina MiSeq) from 
the same set of normal samples resulted in non-correlated pbems series (r 
= -0.02) on the 7,201 shared bp (Figure 2B, S7 versus S8). The same result 
was obtained from 40 normal samples WES data generated using two kits, 
the Roche NimbleGen SeqCap Exome v3 and the Agilent HaloPlex 
Exome (r = -0.03) with 31 Mbp shared positions. These experiments 
suggest that the background noise of sequencing experiments is locus and 
platform specific (Figure 2C). Indeed, approximately 50% of targeted 
positions show evidence of errors (pbem > 0) only when data are derived 
from one platform.

3.3 Stability and optimization of global sequencing error 
estimation GSE

To formally investigate the properties of global sequencing error 
background ABEMUS estimates, we compared the coverage-based AF 
threshold measures  computed on synthetic germline data 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

(Synthetic Dataset #1) across different mean coverages (N=4; 2000x, 
1000x, 500x and 200x), target sizes (N=4; 36 Mbp, 17.7 Mb, 4.4 Mbp and 
0.4 Mbp) and detection specificities (0.99, 0.995, 0.999). Overall, 
although estimations of AF thresholds were relatively stable across 
different mean coverages and target sizes (Figure 3A), especially for strict 
values of detection specificity, poorly populated coverage bins 
demonstrated sparse  distributions (Figure 3A and Figure S1). 𝐺𝑆𝐸𝑐𝑜𝑣_𝑏𝑖𝑛

To correct for this bias, we implemented a refined procedure to identify 
the most suitable coverage-based AF threshold also in those bins that are 
problematic due to low cardinality. Briefly, assuming that coverage bins 
stability is function of bins cardinality, we tested the stability of each 
coverage bin  by performing sub-sampling analysis on coverage 𝑐𝑜𝑣_𝑏𝑖𝑛

, representing the bin having the closest but higher cardinality 𝑐𝑜𝑣_𝑏𝑖𝑛′

with respect to . Specifically, each coverage bin is first 𝑐𝑜𝑣_𝑏𝑖𝑛

decomposed into subsets  and  containing positions with AFs > 0 and 𝑁 𝑀
AFs = 0, respectively. Then, coverage bins are sorted by decreasing 
cardinality of  and starting from the most populated bin of non-zero AFs 𝑁

(and sequentially for each i-th coverage bin), k random samplings (𝑘

 by default) of  and  AFs are performed from  and = 1000 |𝑁𝑖 + 1| |𝑀𝑖 + 1| Ni

, respectively. For each random sub-sample, the resulting  Mi 𝐺𝑆𝐸′𝑐𝑜𝑣_𝑏𝑖𝑛

(with ) is used to estimate . The 𝐺𝑆𝐸′𝑐𝑜𝑣_𝑏𝑖𝑛 ⊆  𝐺𝑆𝐸 𝑐𝑜𝑣_𝑏𝑖𝑛 𝐴𝐹′ 𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

variability across the k estimated  values is quantified using 𝐴𝐹′ 𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

the coefficient of variation . For each i-th coverage bin, if  (𝐶𝑉 𝐶𝑉𝑖 < 𝑡ℎ𝐶𝑉

by default), the cardinality of the coverage bin  is 𝑡ℎ𝐶𝑉 = 0.01 𝐶 𝑖 + 1

considered reliable for the AF threshold estimation, hence the 𝐴

 is computed using  AFs. Otherwise, if , the 𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛𝑖 + 1 𝐶𝑖 + 1 𝐶𝑉𝑖 ≥ 𝑡ℎ𝐶𝑉 𝐴

 is updated as  where j<i is the last coverage bin 𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛𝑖 + 1 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛𝑗

such as . If all coverage bins have , then all 𝐶𝑉𝑗 < 𝑡ℎ𝐶𝑉 𝐶𝑉𝑖 ≥ 𝑡ℎ𝐶𝑉

 are set to the coverage-independent AF threshold ( ). As 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛 𝐴𝐹𝑡ℎ

shown in Figure 3B, the refined procedure resulted in highly stable AF 
thresholds, across different combination of coverage mean, target size and 
detection sensitivity.

3.4 Assessment of scaling factors to maximize ABEMUS 
performance

Synthetic Dataset #1 was used to identify the best scaling factor  to 𝑅
maximize ABEMUS precision and recall for combinations of coverage 
and target size at different ctDNA levels. We tested a wide range of  𝑅
values (N = 71, min = 0.5, max = 8, step 0.01) and evaluated the 
corresponding F1 scores. For each combination of target size, mean 
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coverage and ctDNA level, we selected the minimum factor R among 
those such that , where  is the F1 score achieved by ABEMUS 𝐹𝑅 > 𝐹𝑡ℎ𝑟 𝐹𝑅

using the scaling factor  and  a custom threshold. Analyses using  𝑅 𝐹𝑡ℎ𝑟 𝐹𝑡ℎ𝑟

 indicate that the wider the genomic target ∈ {0.9,0.92,0.94,0.96,0.98}
and the higher the mean coverage, the lower the optimal  required to get 𝑅
a desired F1 score. Conversely, for the same combination of target size 
and coverage, lower admixtures require a greater  (Figure 4 and Figure 𝑅
S2).
Since the ctDNA level information might not be available upfront for a 
plasma sample, we also defined the optimal scaling factor  maximizing 𝑅
precision and recall across a set of admixtures only based on target size 
and coverage. Using a set of thresholds for the F1 score (N = 11, min = 
0.9, max = 1, step 0.01), we selected the minimum  generating an F1 𝑅
score greater than the highest observed threshold in the greater number of 
ctDNA levels considered (N = 9).
Using these optimization results, ABEMUS enables the selection of the R 
factor that best fits the sample’s target size, mean coverage and when 
available ctDNA level; alternatively, the user can set a preferred scaling 
factor R or disable the scaling factor (R=1).

3.5 SNVs detection precision and recall on synthetic data 
ABEMUS performances at different target sizes, mean coverages and 
ctDNA levels were assessed using Synthetic Dataset #2 and were 
compared to performances of four tools commonly used in tumor tissue 
based analysis: SomaticSniper (Larson et al., 2012), MuTect (Cibulskis et 
al., 2013) (run both in standard mode and with creation and usage of a 
panel of normals), VarScan2 (Koboldt et al., 2012) and Strelka2 (Kim et 
al., 2018). All tools were run following developers’ instructions reported 
on the relevant websites. As previously described, background sequencing 
error in Synthetic Dataset #2 was introduced using a per-base error model 
computed from real sequencing data and synthetic reads were generated 
using two different base quality models. ABEMUS was run by exploiting 
the optimized scaling factors result of the previous analysis. As shown in 
Figure 5 and Supplementary Table 4, at the lowest ctDNA level and 
lowest depth of coverage that we considered, ABEMUS is the only tool 
reaching an F1 score of 0.1 with a precision above 60%; all other tools 
demonstrated extremely low F1 score, with Strelka2 being the only one 
with precision and recall above zero. Increasing the depth of coverage, the 
performances of all tools increase with ABEMUS being always among the 
best performing tools for ctDNA level >=10% and outperforming all other 
tools for ctDNA levels <10%. Of note, performances reported in literature 
(Narzisi et al., 2018) for the tools used in this comparison are in line with 
our results.

3.6 Comparison on in-silico dilutions of real cfDNA samples 
The performances of ABEMUS were further investigated using Synthetic 
Dataset #3, which contains synthetic dilutions we computed from real 
data generated at high coverage and for a small target (Carreira et al., 
2014). ABEMUS was compared with Strelka2 and SomaticSniper - 
altogether the tools that in the previous analysis achieved reasonable 
results in a scenario that is similar to the one described by Synthetic 
Dataset #3 - and with SiNVICT, a tool designed for the ultra-sensitive 
detection of SNVs and InDels in cfDNA samples (Kockan et al., 2017). 
To measure the performances of the four tools, we used as reference the 
overall set S of SNVs reported in the original study (Carreira et al., 2014) 
that were manually reviewed and/or experimentally validated through 
ddPCR (i.e. SNVs in AR, TP53, FOXA1 and PTEN genes). We defined 

the Positive Predictive Value (PPV), calculated as the number of SNVs in 
S that are detected over the total number of detected SNVs in AR, TP53, 
FOXA1 and PTEN genes, the True Positive Rate (TPR), calculated as the 
number of SNVs in S that are detected over the total number of SNVs in 
S, and the product TPR*PPV. PPV, TPR and TPR*PPV were computed 
considering the set of calls across the four genes of interest performed by 
each tool across all set of 291 in-silico diluted samples. Although the 
optimal ABEMUS scaling factor R for Synthetic Dataset #3 was 1.1 (for 
all synthetic samples), we also tested R values around the optimal value, 
specifically from 0.5 to 1.5. As shown in Figure 6A, SomaticSniper 
obtained the best results in terms of PPV for most ctDNA levels, but failed 
in terms of TPR and TPR*PPV, indicating very low sensitivity. SiNVICT, 
instead, obtained reasonable TPR but failed in terms of PPV and 
TRP*PPV, indicating a potential high fraction of false positives among 
the detected somatic SNVs. ABEMUS performed better than Strelka2 in 
terms of PPV for almost all the tested R values, with optimal scaling factor 
R = 1.1, demonstrating better PPV than Strelka2 at all ctDNA levels except 
for the lowest one, where PPV values resulted equal. In terms of TPR 
values ABEMUS and Strelka2 resulted in similar performances, with 
better ABEMUS results at lower R values. ABEMUS was the best tool in 
terms of TPR*PPV for most scenarios and for the majority of R scaling 
factors, with optimal scaling factor R = 1.1 performing better than Strelka2 
in all conditions except for ctDNA level equal to 2.5%, were the two 
TPR*PPV values resulted equal. Overall, ABEMUS demonstrated the 
best performances among the majority of tested conditions, especially 
when pre-computed optimal scaling factor R was applied.

3.7 Performances on real cfDNA sequencing data 
We finally compared ABEMUS and Strelka2 on a set of serial plasma 
samples (Carreira et al., 2014). Performances of both tools were tested 
relying on detection of SNVs annotated in previously relevant studies 
(Abida et al., 2019; Robinson et al., 2015) or in COSMIC (Forbes et al., 
2017); for COSMIC only variants annotated as confirmed somatic 
variants and with primary site Prostate were considered. Scaling factors 
R optimized for mean coverage and target size were used. As shown in 
Figure 6B we observed high concordance between ABEMUS and 
Strelka2, but ABEMUS was able to detect SNVs in positions at low AF 
were Strelka2 was not. Among the 3 calls performed only by ABEMUS, 
two were also validated in the original study and present in other samples 
from the same patient. These two SNVs were identified in patient V4023, 
the first in TP53 gene with allelic fraction 0.014 and protein change 
Cys135* in sample 11-244-B with estimated ctDNA of 13.1%, while the 
second in gene FOXA1 with allelic fraction 0.016 and protein change 
Asp226His in the sample 10-315-B with estimated ctDNA of 15.5%. The 
remaining SNV identified at low allelic fraction only by ABEMUS was 
found in another sample from the same patient V4012 by both tools, 
strongly supporting the validity of the ABEMUS private call.
Considering that optimized scaling factors resulted in R=1.1 for all plasma 
serial samples, we also tested to what extent the knowledge of ctDNA 
level would have improved ABEMUS calls. Considering ctDNA levels 
reported in the original study (Carreira et al., 2014), ABEMUS was run 
again on all plasma samples with results that were overall concordant. 
ABEMUS was in this case able to identify in patient V4048 a further SNV 
with an allelic fraction concordant with another SNV captured by both 
tools in the same sample and in the same gene. 
Overall, both ABEMUS and Strelka2 achieved good results but ABEMUS 
demonstrated increased power in detecting low allelic fraction SNVs in 
low ctDNA levels plasma samples. In addition, upfront knowledge of 
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sample’s ctDNA levels could be used to further improve detection 
sensitivity. 

4 Discussion

Different approaches have been proposed in the past years to characterize 
somatic mutations in cfDNA. While methods like optimized quantitative 
PCR (Taly et al., 2012) or dPCR are highly sensitive (Didelot et al., 2013; 
Yu et al., 2017), they are limited in the number of mutations to test via 
multiplexing, while requiring up to 3ng of input DNA. Next-generation 
sequencing approaches can instead be used to screen a large number of 
mutations with sensitivity that is limited by background noise and 
dependent on the sequencing depth. Although recent studies (Mouliere et 
al., 2018) suggested that fragment size selection might improve somatic 
SNVs detection sensitivity, highly sub-clonal somatic SNVs due for 
instance to intra-patient heterogeneity or treatment resistance would 
remain extremely difficult to detect. In this challenging scenario, tools 
designed to detect low allelic fraction variants (Carrot-Zhang and 
Majewski, 2017) or computational pipelines specifically tailored for 
cfDNA data are necessary. So far, cfDNA specific approaches were either 
tuned for amplicon based NGS targeted platforms (Kleftogiannis et al., 
2019; Pécuchet et al., 2016) or yet partially benchmarked against standard 
SNVs methods across different scenarios of coverage depth and target size 
(Kockan et al., 2017), potentially limiting their widespread applicability.
Here we presented a new NGS-based computational method named 
ABEMUS that uses control samples to build global and local sequencing 
error reference models that are used to improve the detection of SNVs in 
cfDNA samples.
We showed that local sequencing error, namely the per-base error 
measure, is platform specific and that hence platform specific sequencing 
error reference models are needed to effectively discriminate between true 
SNVs and artefactual signals in the challenging cfDNA scenario. In this 
respect, ABEMUS provides an automatic approach to build platform 
specific reference models from NGS control samples.
We showed that ABEMUS sequencing errors reference models are stable 
across a broad range of depth of coverage and target size scenarios and we 
optimized, across the same scenarios, the precision and recall of 
ABEMUS SNVs detection engine.
ABEMUS performances were tested against tools commonly used to 
identify SNVs in tumor tissue samples and against tools specifically 
designed for cfDNA samples using synthetic data, cancer patients cfDNA 
data in-silico diluted and cancer patients multi-sample cfDNA data. 
Overall, we showed that ABEMUS improves the detection of low allelic 
fraction SNVs in low ctDNA levels plasma samples in scenarios spanning 
from whole-exome data (tens of Mb) to small targeted panels data (tens of 
Kb). Of note, a limitation of the current version of ABEMUS is the 
absence of a module for the detection of InDels. ABEMUS is easy to use, 
can be applied on any custom or commercial platform or gene panel and 
can be integrated in any NGS processing and analysis pipeline.
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Figure 1. ABEMUS schematic workflow. ABEMUS inputs are pre-processed sequencing data from (matched) control and case samples (e.g. plasma, tumor tissue) profiled using 

the same platform (library preparation kit and sequencing machine). The computational workflow includes two separate steps. First, control samples are pooled and analyzed to 

estimate platform-specific error models: i) overall distribution of allelic fractions (AFs) (global sequencing error estimation, GSE) and ii) locus-specific error measure (per-base error 

measure, pbem). For an intended specificity level, the GSE is used to determine coverage-independent ( ) and coverage-dependent ( ) AF thresholds (GSEs corresponding 𝐴𝐹𝑡ℎ 𝐴𝐹𝑡ℎ𝑐𝑜𝑣𝑏𝑖𝑛

to AF=0 not shown although considered in quantile estimations). For each position , the AF threshold  is computed as a function of the observed local  and is 𝑥 𝐴𝐹𝑡ℎ𝑝𝑏𝑒𝑚(𝑥) 𝑝𝑏𝑒𝑚𝑥

dependent on the locus coverage  and on the assay target size through a rescaling factor . Second, for each case sample, ABEMUS nominates a set of putative somatic SNVs 𝑐𝑜𝑣𝑥 𝑅

by filtering all available genomic positions having AF>0 using pre-computed global and local sequencing error estimations.
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Figure 2. Estimation and comparison of pbem within and across platforms. (A) Correlations among pbem computed using disjoint sets of control samples sequenced on the same 

platform. Three platforms are considered. S1 (N=56) and S2 (N=57) are normal samples sequenced using Ion AmpliSeq Targeted Custom Amplicon panel (40kbp; IonTorrent PGM); 

S3 (N=20) and S4 (N=20) are control samples sequenced using Agilent HaloPlex Exome (36Mbp; Illumina HiSeq2000); S5 (N=10) and S6 (N=10) are control samples sequenced 

using Roche NimbleGen N250 targeted panel (3.2Mbp; Illumina HiSeq 2000). (B) Correlation among locus specific sequencing error probabilities when computed using same sets of 

control samples sequenced on different platforms. S7 (N=3) and S8 (N=3) loci shared (7 kbp) between targeted custom Ion AmpliSeq Targeted Custom Amplicon panel and Illumina 

True Seq Custom Amplicon; S9 (N=40) and S3+S4 (N=40) loci shared (26Mbp) between Roche NimbleGen SeqCap Exome v3 (64Mbp; Illumina HiSeq 2000) and Agilent HaloPlex 

Exome. (C) Proportion of concordant and discordant pbems when comparing samples profiled using the same (yellow polygons) or different platforms (light blue polygons). R1 and 

R4 axes indicate the proportion of loci characterized by two concordant pbems since they are both equal or greater than zero, respectively. R2 and R3 axes indicate the proportion of 

genomic loci with discordant pbems: a genomic locus showing the first pbem equal to zero and the second one greater than zero, or viceversa.
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Figure 3. Estimation of coverage-dependent allelic fraction thresholds. Estimation of coverage-dependent allelic fraction thresholds ( ) at different detection specificities 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

 across multiple target sizes (left) and depths of coverage (right). Samples with depth of coverage of 1000x (left) and target size of 18Mbp (right) are considered. (A) Original 𝑠

 estimations are affected by high variability in poorly populated coverage bins ( ) (see Figure S1). (B)  estimations after ad-hoc procedure is applied 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛 𝑐𝑜𝑣_𝑏𝑖𝑛 𝐴𝐹𝑡ℎ_𝑐𝑜𝑣_𝑏𝑖𝑛

resulted in a stable trend. Labels: “tx” denotes the genomic fraction “x” of original HaloPlex panel covered (i.e. t50 indicates that 50% of the base covered by the original HaloPlex 

panel has been kept); “cx” denotes the fraction “x” of original depth of coverage (i.e. c10 indicates that 10% of the original total number of sequencing reads has been kept).
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Figure 4. Assessment of the optimal scaling factor R to maximize ABEMUS performances for combinations of target size, coverage and ctDNA level. The y-axis reports 

scaling factors R and the x-axis indicates target sizes at four different coverage levels. Dots and lines refer to the ctDNA level tested. Given a combination of coverage, target size and 

ctDNA level, each dot indicates the optimal R scaling factor to be applied to get a F1-score ≥ 0.98. The wider the genomic target and the higher the mean coverage, the lower the 

optimal  required to get the desired F1-score.𝑅
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Figure 5. Comparative performance analysis among ABEMUS and other SNV callers based on synthetic data. Precision and recall measures are reported on x and y axes, 

respectively. Grey curves represent F1-scores as annotated to the right. Shapes represent tools; colors denote base quality (“BQ”) of 20 (yellow) and 30 (orange). Decreasing levels of 

ctDNA (40%, 10%, 5% and 2.5%) are shown from left to right. Top: performances obtained on target size of 36Mbp (100% of original HaloPlex panel) and 200x mean depth of 

coverage. Middle: performances on target size of 4.5Mbp (12% of original HaloPlex panel) and 1000x mean depth of coverage. Bottom: performances on target size of 0.36Mbp (1% 

of original HaloPlex panel) and 2000x mean depth of coverage.
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Figure 6. Performance on cancer patient’s plasma data. (A) Barplot showing performances of ABEMUS applying scaling factors R from 0.5 to 1.5 (blue), SiNVICT (purple), 

SomaticSniper (orange) and Strelka2 (green) on synthetically diluted cancer patient’s plasma samples. From top to bottom performances in terms of positive predictive value (PPV), true 

positive rate (TPR) and the product PPV*TPR are shown on y-axes, respectively. Decreasing levels of ctDNA (10%, 7.5%, 5% and 2.5%) are shown in grey boxes from left to right. (B) 

Overview of ABEMUS and Strelka2 calls on real plasma data. Only genomic positions annotated (green boxes in “List” column) in relevant published studies (Abida et al., 2019; 

Robinson et al., 2015) or in COSMIC are reported. For each patient, if an annotated genomic position is identified as SNV by ABEMUS or Strelka2 in at least one serial sample, all 

samples data are shown. TC: tumor content (ctDNA level); AF: allelic fraction; pbem: local per-base error measure.
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