18 research outputs found

    Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing

    Get PDF
    The Southern Hemisphere westerly winds (SHW) play an important role in regulating the capacity of the Southern Ocean carbon sink. They modulate upwelling of carbon-rich deep water and, with sea ice, determine the ocean surface area available for air–sea gas exchange. Some models indicate that the current strengthening and poleward shift of these winds will weaken the carbon sink. If correct, centennial- to millennial-scale reconstructions of the SHW intensity should be linked with past changes in atmospheric CO2, temperature and sea ice. Here we present a 12,300-year reconstruction of wind strength based on three independent proxies that track inputs of sea-salt aerosols and minerogenic particles accumulating in lake sediments on sub-Antarctic Macquarie Island. Between about 12.1 thousand years ago (ka) and 11.2 ka, and since about 7 ka, the wind intensities were above their long-term mean and corresponded with increasing atmospheric CO2. Conversely, from about 11.2 to 7.2 ka, the wind intensities were below their long-term mean and corresponded with decreasing atmospheric CO2. These observations are consistent with model inferences of enhanced SHW contributing to the long-term outgassing of CO2 from the Southern Ocean

    Southern westerlies in LGM and future (RCP4.5) climates

    Get PDF
    International audienceMid-latitude westerlies are a major component of the atmospheric circulation and understanding their behaviour under climate change is important for understanding changes in precipitation, storms and atmosphere-ocean momentum, heat and CO2 exchanges. The Southern Hemisphere westerlies have been particularly studied in terms of the latter aspects, since the Southern Ocean is a key region for the global oceanic circulation as well as for CO2 uptake. In this study, we analyse, mainly in terms of jet stream position, the behaviour of the southern westerlies for the Last Glacial Maximum (LGM, 21 000 yr ago, which is the last past cold extreme) and for a future climate, obtained after stabilisation of the RCP4.5 scenario. The a priori guess would be that the behaviour of the westerly jet stream would be similar when examining its changes from LGM to pre-industrial (PI) conditions and from PI to RCP4.5, i.e. in both cases a poleward shift in response to global warming. We show that this is in fact not the case, due to the impact of altitude changes of the Antarctic ice sheet and/or to sea ice cover changes. © Author(s) 2013

    Interleukin-15:Interleukin-15 receptor α scaffold for creation of multivalent targeted immune molecules

    No full text
    Human interleukin-15 (hIL-15) and its receptor α (hIL-15Rα) are co-expressed in antigen presenting cells allowing trans-presentation of the cytokine to immune effector cells. We exploited the high-affinity interactions between hIL-15 and the extracellular hIL-15Rα sushi domain (hIL-15RαSu) to create a functional scaffold for the design of multispecific fusion protein complexes. Using single-chain T cell receptors (scTCRs) as recognition domains linked to the IL-15:IL-15Rα scaffold, we generated both bivalent and bispecific complexes. In these fusions, the scTCR domains retain the antigen-binding activity and the hIL-15 domain exhibits receptor binding and biological activity. As expected, bivalent scTCR fusions exhibited improved antigen binding due to increased avidity, whereas fusions comprising two different scTCR domains were capable of binding two cognate peptide/MHC complexes. Bispecific molecules containing scTCR and scCD8αβ domains also exhibit enhanced binding to peptide/MHC complexes, demonstrating that the IL-15:IL-15Rα scaffold displays flexibility necessary to support multi-domain interactions with a given target. Surprisingly, functional heterodimeric molecules could be formed by co-expressing the TCR α and β chains separately as fusions to the hIL-15 and hIL-15RαSu domains. Together, these properties indicate that the hIL-15 and hIL-15RαSu domains can be used as versatile, functional scaffold for generating novel targeted immune molecules
    corecore