656 research outputs found
Detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides
We present a novel method for detecting nonlinearities, due to quantum
electrodynamics through photon-photon scattering, in Maxwell's equation. The
photon-photon scattering gives rise to self-interaction terms, which are
similar to the nonlinearities due to the polarisation in nonlinear optics.
These self-interaction terms vanish in the limit of parallel propagating waves,
but if instead of parallel propagating waves the modes generated in wavesguides
are used, there will be a non-zero total effect. Based on this idea, we
calculate the nonlinear excitation of new modes and estimate the strength of
this effect. Furthermore, we suggest a principal experimental setup.Comment: 4 pages, REVTeX3. To appear in Phys. Rev. Let
Use of stereotypical mutational motifs to define resolution limits for the ultra-deep resequencing of mitochondrial DNA.
Massively parallel resequencing of mitochondrial DNA (mtDNA) has led to significant advances in the study of heteroplasmic mtDNA variants in health and disease, but confident resolution of very low-level variants ( C, from patient with MNGIE, mitochondrial neurogastrointestinal encephalomyopathy) and comparing mutational pattern distribution with healthy mtDNA by ligation-mediated deep resequencing (Applied Biosystems SOLiD). We empirically derived mtDNA-mutant heteroplasmy detection limits, demonstrating that the presence of stereotypical mutational motif could be statistically validated for heteroplasmy thresholds ≥ 0.22% (P = 0.034). We therefore provide empirical evidence from biological samples that very low-level mtDNA mutants can be meaningfully resolved by massively parallel resequencing, confirming the utility of the approach for studying somatic mtDNA mutation in health and disease. Our approach could also usefully be employed in other settings to derive platform-specific deep resequencing resolution limits
Dielectric and thermal relaxation in the energy landscape
We derive an energy landscape interpretation of dielectric relaxation times
in undercooled liquids, comparing it to the traditional Debye and
Gemant-DiMarzio-Bishop pictures. The interaction between different local
structural rearrangements in the energy landscape explains qualitatively the
recently observed splitting of the flow process into an initial and a final
stage. The initial mechanical relaxation stage is attributed to hopping
processes, the final thermal or structural relaxation stage to the decay of the
local double-well potentials. The energy landscape concept provides an
explanation for the equality of thermal and dielectric relaxation times. The
equality itself is once more demonstrated on the basis of literature data for
salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems,
Molveno 2006, submitted to Philosophical Magazin
The Mikheyev-Smirnov-Wolfenstein Effect as a Probe of the Solar Interior
We relate the MSW effect to the efective absorption of the electronic
collective motion energy by retaining the imaginary part of the index of
refraction associated with the charged-current scattering and show that the
small angle MSW solution to the solar neutrino anomaly can be used as a probe
of the physical conditions of the solar interior if it is correct. We find that
the constraint on the absorption imposed by the small angle MSW solution and
the theoretical estimate of the absorption by the Boltzmann kinetic theory are
consistent, which shows that a consistent theoretical picture can be developed
when plasma absorption processes are taken into account.Comment: 4 pages, no figure, REVTeX, to appear in Phys. Rev.
Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model
The influence of the finite number N of particles coupled to a monochromatic
wave in a collisionless plasma is investigated. For growth as well as damping
of the wave, discrete particle numerical simulations show an N-dependent long
time behavior resulting from the dynamics of individual particles. This
behavior differs from the one due to the numerical errors incurred by Vlasov
approaches. Trapping oscillations are crucial to long time dynamics, as the
wave oscillations are controlled by the particle distribution inhomogeneities
and the pulsating separatrix crossings drive the relaxation towards thermal
equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
Human NK Cells Differ More in Their KIR2DL1-Dependent Thresholds for HLA-Cw6-Mediated Inhibition than in Their Maximal Killing Capacity
In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-γ secretion are not correlated. In contrast, the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after being activated by a first encounter with the same or a different target cell, but not by models which lack this feature
State diagrams of the heart – a new approach to describing cardiac mechanics
<p>Abstract</p> <p>Background</p> <p>Cardiac time intervals have been described as a measure of cardiac performance, where prolongation, shortening and delay of the different time intervals have been evaluated as markers of cardiac dysfunction. A relatively recently developed method with improved ability to measure cardiac events is Tissue Doppler Imaging (TDI), allowing accurate measurement of myocardial movements.</p> <p>Methods</p> <p>We propose the state diagram of the heart as a new visualization tool for cardiac time intervals, presenting comparative, normalized data of systolic and diastolic performance, providing a more complete overview of cardiac function. This study aimed to test the feasibility of the state diagram method by presenting examples demonstrating its potential use in the clinical setting and by performing a clinical study, which included a comparison of the state diagram method with established echocardiography methods (E/E' ratio, LVEF and WMSI). The population in the clinical study consisted of seven patients with non ST-elevation myocardial infarction (NSTEMI) and seven control subjects, individually matched according to age and gender. The state diagram of the heart was generated from TDI curves from seven positions in the myocardium, visualizing the inter- and intraventricular function of the heart by displaying the cardiac phases.</p> <p>Results</p> <p>The clinical examples demonstrated that the state diagram allows for an intuitive visualization of pathological patterns as ischemia and dyssynchrony. Further, significant differences in percentage duration between the control group and the NSTEMI group were found in eight of the totally twenty phases (10 phases for each ventricle), e.g. in the transition phases (Pre-Ejection and Post-Ejection). These phases were significantly longer (> 2.18%) for the NSTEMI group than for the control group (p < 0.05). No significant differences between the groups were found for the established echocardiography methods.</p> <p>Conclusion</p> <p>The test results clearly indicate that the state diagram has potential to be an efficient tool for visualization of cardiac dysfunction and for detection of NSTEMI.</p
Very high frequency gravitational wave background in the universe
Astrophysical sources of high frequency gravitational radiation are
considered in association with a new interest to very sensitive HFGW receivers
required for the laboratory GW Hertz experiment. A special attention is paid to
the phenomenon of primordial black holes evaporation. They act like black body
to all kinds of radiation, including gravitons, and, therefore, emit an
equilibrium spectrum of gravitons during its evaporation. Limit on the density
of high frequency gravitons in the Universe is obtained, and possibilities of
their detection are briefly discussed.Comment: 14 page
The ischemic preconditioning effect of adenosine in patients with ischemic heart disease
<p>Abstract</p> <p>Introduction</p> <p><it>In vivo </it>and <it>in vitro </it>evidence suggests that adenosine and its agonists play key roles in the process of ischemic preconditioning. The effects of low-dose adenosine infusion on ischemic preconditioning have not been thoroughly studied in humans.</p> <p>Aims</p> <p>We hypothesised that a low-dose adenosine infusion could reduce the ischemic burden evoked by physical exercise and improve the regional left ventricular (LV) systolic function.</p> <p>Materials and methods</p> <p>We studied nine severely symptomatic male patients with severe coronary artery disease. Myocardial ischemia was induced by exercise on two separate occasions and quantified by Tissue Doppler Echocardiography. Prior to the exercise test, intravenous low-dose adenosine or placebo was infused over ten minutes according to a randomized, double blind, cross-over protocol. The LV walls were defined as ischemic if a reduction, no increment, or an increment of < 15% in peak systolic velocity (PSV) was observed during maximal exercise compared to the baseline values observed prior to placebo-infusion. Otherwise, the LV walls were defined as non-ischemic.</p> <p>Results</p> <p>PSV increased from baseline to maximal exercise in non-ischemic walls both during placebo (<it>P </it>= 0.0001) and low-dose adenosine infusion (<it>P </it>= 0.0009). However, in the ischemic walls, PSV increased only during low-dose adenosine infusion <it>(P </it>= 0.001), while no changes in PSV occurred during placebo infusion (<it>P </it>= NS).</p> <p>Conclusion</p> <p>Low-dose adenosine infusion reduced the ischemic burden and improved LV regional systolic function in the ischemic walls of patients with exercise-induced myocardial ischemia, confirming that adenosine is a potential preconditioning agent in humans.</p
- …