71 research outputs found

    Anti-Müllerian Hormone Signaling Regulates Epithelial Plasticity and Chemoresistance in Lung Cancer

    Get PDF
    © 2016 The Author(s)Anti-Müllerian hormone (AMH) and its type II receptor AMHR2, both previously thought to primarily function in gonadal tissue, were unexpectedly identified as potent regulators of transforming growth factor (TGF-β)/bone morphogenetic protein (BMP) signaling and epithelial-mesenchymal transition (EMT) in lung cancer. AMH is a TGF-β/BMP superfamily member, and AMHR2 heterodimerizes with type I receptors (ALK2, ALK3) also used by the type II receptor for BMP (BMPR2). AMH signaling regulates expression of BMPR2, ALK2, and ALK3, supports protein kinase B-nuclear factor κB (AKT-NF-κB) and SMAD survival signaling, and influences BMP-dependent signaling in non-small cell lung cancer (NSCLC). AMH and AMHR2 are selectively expressed in epithelial versus mesenchymal cells, and loss of AMH/AMHR2 induces EMT. Independent induction of EMT reduces expression of AMH and AMHR2. Importantly, EMT associated with depletion of AMH or AMHR2 results in chemoresistance but sensitizes cells to the heat shock protein 90 (HSP90) inhibitor ganetespib. Recognition of this AMH/AMHR2 axis helps to further elucidate TGF-β/BMP resistance-associated signaling and suggests new strategies for therapeutic targeting of EMT

    A novel HSP90 inhibitor-drug conjugate to SN38 is highly effective in small cell lung cancer

    Get PDF
    ©2016 AACR.Purpose: Small cell lung cancer (SCLC) is a highly aggressive disease representing 12% to 13% of total lung cancers, with median survival of <2 years. No targeted therapies have proven effective in SCLC. Although most patients respond initially to cytotoxic chemotherapies, resistance rapidly emerges, response to second-line agents is limited, and dose-limiting toxicities (DLT) are a major issue. This study performs preclinical evaluation of a new compound, STA-8666, in SCLC. Experimental Design: To avoid DLT for useful cytotoxic agents, the recently developed drug STA-8666 combines a chemical moiety targeting active HSP90 (concentrated in tumors) fused via cleavable linker to SN38, the active metabolite of irinotecan. We compare potency and mechanism of action of STA-8666 and irinotecan in vitro and in vivo. Results: In two SCLC xenograft and patient-derived xenograft models, STA-8666 was tolerated without side effects up to 150 mg/kg. At this dose, STA-8666 controlled or eliminated established tumors whether used in a first-line setting or in tumors that had progressed following treatment on standard first- and second-line agents for SCLC. At 50 mg/kg, STA-8666 strongly enhanced the action of carboplatin. Pharmacokinetic profiling confirmed durable STA-8666 exposure in tumors compared with irinotecan. STA-8666 induced a more rapid, robust, and stable induction of cell-cycle arrest, expression of signaling proteins associated with DNA damage and cell-cycle checkpoints, and apoptosis in vitro and in vivo, in comparison with irinotecan. Conclusions: Together, these results strongly support clinical development of STA-8666 for use in the first- or second-line setting for SCLC

    Нокаут гистоновой метилтрансферазы NSD1 приводит к снижению пролиферации и увеличению чувствительности к цисплатину клеток плоскоклеточного рака гортани

    Get PDF
    Introduction. The histone methylation regulates gene expression and plays a role in genomic stability participating in DNA repair. Dimethylation of histone 3 lysine 36 (H3K36me2) is an important histone modification which is responsible for gene expression activation. H3K36me2 is a product of methyltransferase activity of NSD1, NSD2, NSD3, and ASH1L proteins. NSD1 mutations are known to often occur in head and neck squamous carcinoma. The presence of NSD1 mutations highly correlates with increased survival, especially for patients with laryngeal cancer. The aim of this study was an in vitro investigation of the role of NSD1 in the cell proliferation of laryngeal squamous cell cancer and non-small lung cancer cells, as well as a study of the effect of disruption of the NSD1 gene expression on cisplatin treatment response.Material and Methods. Using TCGA, correlation analysis was performed to compare NSD1 wild type and mutant patient survival. NSD1 knockout cell lines models of laryngeal and non-small cell lung cancer were developed using the CRISPR/ Cas9 system. The effect of NSD1 knockout on H3K36me2 level was evaluated by western blot. Proliferation and IC50 of cisplatin in control and knockout cells were studied as well.Results. It was demonstrated that NSD1 knockout decreased the H3K36me2 level and cell proliferation in laryngeal squamous cell cancer cells and increased the sensitivity of head and neck cancer cells to cisplatin treatment, while there was no effect of NSD1 knockout in a non-small cell lung cancer cell line.Conclusion. Based on the data obtained, it can be concluded that the NSD1 protein is a potential target for inhibitor development following in vitro and in vivo testing in head-neck squamous cell carcinoma models. More studies are needed for better understanding of the regulation of tumor cell growth by NSD1. Введение. Метилирование гистонов является одним из механизмов, участвующих в регуляции экспрессии генов и поддерживающих стабильность генома, участвуя в репарации ДНК. Диметилирование лизина 36 на гистоне 3 (H3K36me2) является одной из важнейших гистоновых модификаций, которая характеризуется как эпигенетическая метка, ответственная за активацию экспрессии генов. H3K36me2 – продукт ферментной активности белков NSD1, NSD2, NSD3 и ASH1L. Известно, что мутации гистоновой метилтрансферазы NSD1 часто встречаются при плоскоклеточном раке головы и шеи, и наличие мутаций NSD1 положительно коррелирует с повышенной выживаемостью пациентов. Особенно эта тенденция выражена у пациентов с раком гортани.Целью исследования стали изучение роли NSD1 в росте клеток плоскоклеточного рака гортани и немелкоклеточного рака легкого и оценка влияния нарушения экспрессии NSD1 на чувствительность клеток к цисплатину.Материалы и методы. С использованием базы данных TCGA был проведен корреляционный анализ между наличием мутаций в гене NSD1 и выживаемостью пациентов. С помощью системы геномного редактирования CRISPR/Cas9 были созданы клеточные линии рака гортани и немелкоклеточного рака легкого с нокаутом гена NSD1. Методом иммуноблоттинга был оценен эффект нокаута NSD1 на уровень H3K36me2 в контрольных и нокаутных клетках. Также были проведены тест на пролиферацию клеток и тест на определение жизнеспособности клеток под действием цисплатина.Результаты. Нокаут NSD1 эффективно снижает уровень H3K36me2 в клеточных линиях рака гортани и рака легкого. Также на созданных клеточных моделях было продемонстрировано, что нокаут NSD1 значительно понижает пролиферативную активность клеток рака гортани и повышает эффективность лечения цисплатином, в то время как в клетках немелкоклеточного рака легкого такого эффекта обнаружено не было.Заключение. На основе полученных данных можно сделать вывод о том, что белок NSD1 является потенциальной мишенью для разработки ингибиторов с последующим тестированием in vitro и in vivo на моделях плоскоклеточного рака головы и шеи, особенно рака гортани. Для более детального понимания того, как NSD1 регулирует рост опухолевых клеток, нужны дополнительные исследования

    Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis

    Get PDF
    © 2016, National Academy of Sciences. All rights reserved.Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of KrasLA1/+;P53R172HΔG/+ (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness

    Aberrant DNA Methylation Is Associated with Disease Progression, Resistance to Imatinib and Shortened Survival in Chronic Myelogenous Leukemia

    Get PDF
    The epigenetic impact of DNA methylation in chronic myelogenous leukemia (CML) is not completely understood. To elucidate its role we analyzed 120 patients with CML for methylation of promoter-associated CpG islands of 10 genes. Five genes were identified by DNA methylation screening in the K562 cell line and 3 genes in patients with myeloproliferative neoplasms. The CDKN2B gene was selected for its frequent methylation in myeloid malignancies and ABL1 as the target of BCR-ABL translocation. Thirty patients were imatinib-naïve (mostly treated by interferon-alpha before the imatinib era), 30 were imatinib-responsive, 50 were imatinib-resistant, and 10 were imatinib-intolerant. We quantified DNA methylation by bisulfite pyrosequencing. The average number of methylated genes was 4.5 per patient in the chronic phase, increasing significantly to 6.2 in the accelerated and 6.4 in the blastic phase. Higher numbers of methylated genes were also observed in patients resistant or intolerant to imatinib. These patients also showed almost exclusive methylation of a putative transporter OSCP1. Abnormal methylation of a Src suppressor gene PDLIM4 was associated with shortened survival independently of CML stage and imatinib responsiveness. We conclude that aberrant DNA methylation is associated with CML progression and that DNA methylation could be a marker associated with imatinib resistance. Finally, DNA methylation of PDLIM4 may help identify a subset of CML patients that would benefit from treatment with Src/Abl inhibitors

    The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with <it>Helicobacter pylori </it>(<it>H. pylori</it>) and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH) events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements.</p> <p>Methods</p> <p>The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the <it>H. pylori</it>-negative gastric mucosa.</p> <p>Results</p> <p>The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the <it>H. pylori</it>-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the <it>H. pylori</it>-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner.</p> <p>Conclusions</p> <p>The overmethylated genes under the influence of retroelement methylation in the <it>H. pylori</it>-infected stomach are demethylated in the gastric cancers influenced by LOH.</p

    Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas

    Get PDF
    Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory

    DNA Methylation Profiles of Primary Colorectal Carcinoma and Matched Liver Metastasis

    Get PDF
    BACKGROUND: The contribution of DNA methylation to the metastatic process in colorectal cancers (CRCs) is unclear. METHODS: We evaluated the methylation status of 13 genes (MINT1, MINT2, MINT31, MLH1, p16, p14, TIMP3, CDH1, CDH13, THBS1, MGMT, HPP1 and ERα) by bisulfite-pyrosequencing in 79 CRCs comprising 36 CRCs without liver metastasis and 43 CRCs with liver metastasis, including 16 paired primary CRCs and liver metastasis. We also performed methylated CpG island amplification microarrays (MCAM) in three paired primary and metastatic cancers. RESULTS: Methylation of p14, TIMP3 and HPP1 in primary CRCs progressively decreased from absence to presence of liver metastasis (13.1% vs. 4.3%; 14.8% vs. 3.7%; 43.9% vs. 35.8%, respectively) (P<.05). When paired primary and metastatic tumors were compared, only MGMT methylation was significantly higher in metastatic cancers (27.4% vs. 13.4%, P = .013), and this difference was due to an increase in methylation density rather than frequency in the majority of cases. MCAM showed an average 7.4% increase in DNA methylated genes in the metastatic samples. The numbers of differentially hypermethylated genes in the liver metastases increased with increasing time between resection of the primary and resection of the liver metastasis. Bisulfite-pyrosequencing validation in 12 paired samples showed that most of these increases were not conserved, and could be explained by differences in methylation density rather than frequency. CONCLUSIONS: Most DNA methylation differences between primary CRCs and matched liver metastasis are due to random variation and an increase in DNA methylation density rather than de-novo inactivation and silencing. Thus, DNA methylation changes occur for the most part before progression to liver metastasis

    Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma

    Get PDF
    Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection. © 2010 Macmillan Publishers Limited.Published versio
    corecore