322 research outputs found

    A theoretical model for determining thermal conductivity of porous solid materials

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.In present study a new-developed simple algebraic equation is used to find out the effective thermal conductivity of new–produced composite materials that have nonhomogenous microscopic porosity. Thermal power plant ashes, tragacanth and portland cement are used as binding components of these porous composite materials. By varying the mixing ratio of three components, 24 samples have been produced. Effective thermal conductivity coefficients obtained by the algebraic method is then compared to the ones obtained by experimental measurement techniques. The theoretical results are found to be agreeable with the experimental results.dc201

    Association among SNAP-25 gene DdeI and MnlI polymorphisms and hemodynamic changes during methylphenidate use: A functional near-infrared spectroscopy study

    Get PDF
    Objective: To investigate the interaction of treatment-related hemodynamic changes with genotype status for Synaptosomal associated protein 25 (SNAP-25) gene in participants with attention deficit hyperactivity disorder (ADHD) on and off single dose short-acting methylphenidate treatment with functional near-infrared spectroscopy (fNIRS). Method: A total of 15 right-handed adults and 16 right-handed children with DSM-IV diagnosis of ADHD were evaluated. Ten milligrams of short-acting methylphenidate was administered in a crossover design. Results: Participants with SNAP-25 DdeI T/T genotype had decreased right deoxyhemoglobin ([HHb]) with treatment. SNAP-25 MnlI genotype was also associated with right deoxyhemoglobin ([HbO2]) and [HHb] changes as well as left [HHb] change. When the combinations of these genotypes were taken into account, the participants with [DdeI C/C or T/C and MnlI G/G or T/G] genotype had increased right [HHb] with MPH use whereas the participants with [DdeI T/T and MnlI T/T] or [DdeI T/T and MnlI G/G or T/G] genotypes had decreased right prefrontal [HHb]. Conclusions: These results suggested that SNAP-25 polymorphism might be associated with methylphenidate induced brain hemodynamic changes in ADHD participants. © 2011 SAGE Publications

    Circulating exosomal microRNA expression patterns distinguish cardiac sarcoidosis from myocardial ischemia.

    Get PDF
    OBJECTIVE: Cardiac sarcoidosis is difficult to diagnose, often requiring expensive and inconvenient advanced imaging techniques. Circulating exosomes contain genetic material, such as microRNA (miRNA), that are derived from diseased tissues and may serve as potential disease-specific biomarkers. We thus sought to determine whether circulating exosome-derived miRNA expression patterns would distinguish cardiac sarcoidosis (CS) from acute myocardial infarction (AMI). METHODS: Plasma and serum samples conforming to CS, AMI or disease-free controls were procured from the Biologic Specimen and Data Repository Information Coordinating Center repository and National Jewish Health. Next generation sequencing (NGS) was performed on exosome-derived total RNA (n = 10 for each group), and miRNA expression levels were compared after normalization using housekeeping miRNA. Quality assurance measures excluded poor quality RNA samples. Differentially expressed (DE) miRNA patterns, based upon \u3e2-fold change (p \u3c 0.01), were established in CS compared to controls, and in CS compared to AMI. Relative expression of several DE-miRNA were validated by qRT-PCR. RESULTS: Despite the advanced age of the stored samples (~5-30 years), the quality of the exosome-derived miRNA was intact in ~88% of samples. Comparing plasma exosomal miRNA in CS versus controls, NGS yielded 18 DE transcripts (12 up-regulated, 6 down-regulated), including miRNA previously implicated in mechanisms of myocardial injury (miR-92, miR-21) and immune responses (miR-618, miR-27a). NGS further yielded 52 DE miRNA in serum exosomes from CS versus AMI: 5 up-regulated in CS; 47 up-regulated in AMI, including transcripts previously detected in AMI patients (miR-1-1, miR-133a, miR-208b, miR-423, miR-499). Five miRNAs with increased DE in CS included two isoforms of miR-624 and miR-144, previously reported as markers of cardiomyopathy. CONCLUSIONS: MiRNA patterns of exosomes derived from CS and AMI patients are distinct, suggesting that circulating exosomal miRNA patterns could serve as disease biomarkers. Further studies are required to establish their specificity relative to other cardiac disorders

    Electrical stimulation of adipose-derived stem cells in 3D nanofibrillar cellulose increases their osteogenic potential

    Get PDF
    Due to the ageing population, there is a steadily increasing incidence of osteoporosis and osteoporotic fractures. As conventional pharmacological therapy options for osteoporosis are often associated with severe side effects, bone grafts are still considered the clinical gold standard. However, the availability of viable, autologous bone grafts is limited making alternative cell-based strategies a promising therapeutic alternative. Adipose-derived stem cells (ASCs) are a readily available population of mesenchymal stem/stromal cells (MSCs) that can be isolated within minimally invasive surgery. This ease of availability and their ability to undergo osteogenic differentiation makes ASCs promising candidates for cell-based therapies. Recent studies have suggested that both exposure to electrical fields and cultivation in 3D can positively affect osteogenic potential of MSCs. To elucidate the osteoinductive potential of a combination of these biophysical cues on ASCs, cells were embedded within anionic nanofibrillar cellulose (aNFC) hydrogels and exposed to electrical stimulation (ES) for up to 21 days. ES was applied to ASCs in 2D and 3D at a voltage of 0.1 V/cm with a duration of 0.04 ms, and a frequency of 10 Hz for 30 min per day. Exposure of ACSs to ES in 3D resulted in high alkaline phosphatase (ALP) activity and in an increased mineralisation evidenced by Alizarin Red S staining. Moreover, ES in 3D aNFC led to an increased expression of the osteogenic markers osteopontin and osteocalcin and a rearrangement and alignment of the actin cytoskeleton. Taken together, our data suggest that a combination of ES with 3D cell culture can increase the osteogenic potential of ASC. Thus, exposure of ASCs to these biophysical cues might improve the clinical outcomes of regenerative therapies in treatment of osteoporotic fractures

    Papillary fibroelastoma of the aortic valve - a case report and literature review

    Get PDF
    The prevalence of primary cardiac tumour ranges from 0.0017-0.28% and papillary fibroelastoma is rare but not uncommon benign cardiac neoplasm. Currently, with the advent of higher-resolution imaging technology especially transoesophageal echocardiography such cases being recognized frequently. The clinical presentation of these tumours varies from asymptomatic to severe ischaemic or embolic complications. We herein, present a 50-year-old female patient with a papillary fibroelastoma of the aortic valve arising from the endocardium of the right coronary cusp very close to the commissure between the right and non-coronary cusps. The patient presented with angina-like chest pain and was investigated using echocardiography and CT angiographic modalities in addition to the usual investigations. The differential diagnosis considered was a thrombus, myxoma, Lambl's excrescence and infective vegetation. The surgical management included a prompt resection of the tumour on cardiopulmonary bypass avoiding injury to the aortic valve. The patient recovered well. A review of the literature suggests that the cardiac papillary fibroelastoma is a rare but potentially treatable cause of embolic stroke and other fatal complications, therefore, a strong suspicion; appropriate use of imaging modality, preoperative anticoagulation and urgent surgical resection is warranted. Also, possibility of this diagnosis should be kept in mind while managing cardiac or valvular tumours

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Inferring the Transcriptional Landscape of Bovine Skeletal Muscle by Integrating Co-Expression Networks

    Get PDF
    Background: Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. Methodology/Principal Findings: Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF), mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal (adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. Conclusions/Significance: The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo transcriptional regulation of skeletal muscle development

    Cytotoxicity of three light-cured resin cements on 3T3 fibroblasts

    Get PDF
    Abstract Introduction Light-cured resin cements are the first choice for the cementation of laminate veneers. Ideally, they should be biocompatible and offer minimum risks to patients. Objective The aim of this study was to evaluate, in vitro, the cytotoxicity of three resin cements: Variolink II, Ivoclar Vivadent (C1), Allcem Veneer, FGM (C2), and Rely X Veneer, 3M ESPE (C3). Material and method Twenty four samples of each of the cements were fabricated in a standardized metal mold, light activated, and transferred to a 96-well cell plate with culture of fibroblasts. After 24, 48, and 72h of incubation, cytotoxicity was assessed and cell viability was calculated by the methyl-thiazol-tetrazolium (MTT) colorimetric assay. Absorbance was measured at 570 nm using a microplate spectrophotometer. Result The following results were found: Variolink II presented viability of 72.24% (SD 6.80) after 24h, 83.92% (SD 5.26) after 48h, and 92.77% (SD 5.59) after 72h; Allcem Veneer exhibited viability of 70.46% (SD 12.91) after 24h, 85.03% (SD 21.4) after 48h, and 70.46% (SD 12.91) after 72h; Rely X Veneer showed viability of 5.06% (SD 0.88) after 24h, 5.84% (SD 1.18) after 48h, and 6.99% (SD 1.34) after 72h. Conclusion Under these testing conditions, Rely X Veneer presented significantly higher cytotoxicity compared with those of the other light-cured resin cements assessed
    corecore