966 research outputs found
Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond
We derive the exchange-correlation potential corresponding to the nonlocal
van der Waals density functional [M. Dion, H. Rydberg, E. Schroder, D. C.
Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)]. We use this
potential for a self-consistent calculation of the ground state properties of a
number of van der Waals complexes as well as crystalline silicon. For the
latter, where little or no van der Waals interaction is expected, we find that
the results are mostly determined by semilocal exchange and correlation as in
standard generalized gradient approximations (GGA), with the fully nonlocal
term giving little effect. On the other hand, our results for the van der Waals
complexes show that the self-consistency has little effect at equilibrium
separations. This finding validates previous calculations with the same
functional that treated the fully nonlocal term as a post GGA perturbation. A
comparison of our results with wave-function calculations demonstrates the
usefulness of our approach. The exchange-correlation potential also allows us
to calculate Hellmann-Feynman forces, hence providing the means for efficient
geometry relaxations as well as unleashing the potential use of other standard
techniques that depend on the self-consistent charge distribution. The nature
of the van der Waals bond is discussed in terms of the self-consistent bonding
charge.Comment: submitted to Phys. Rev.
How Large is the Intrinsic Flux Noise of a Magnetic Flux Quantum, of Half a Flux Quantum and of a Vortex-Free Superconductor?
This article addresses the question whether the magnetic flux of stationary
vortices or of half flux quanta generated by frustrated superconducting rings
is noisy. It is found that the flux noise generated intrinsically by a
superconductor is, in good approximation, not enhanced by stationary vortices.
Half flux quanta generated by -rings are characterized by considerably
larger noise.Comment: 11 pages, 3 figures. in: A. Bussmann-Holder, H. Keller (Eds.) High Tc
Superconductors and Related Transition Metal Oxides, Springer, 237-242; also
to be published in: Journal of Superconductivity (2007
Quasiparticle Interface States in Junctions Involving d-Wave Superconductors
Influence of surface pair breaking, barrier transmission and phase difference
on quasiparticle bound states in junctions with d-wave superconductors is
examined. Based on the quasiclassical theory of superconductivity, an approach
is developed to handle interface bound states. It is shown in SIS' junctions
that low energy bound states get their energies reduced by surface pair
breaking, which can be taken into account by introducing an effective order
parameter for each superconductor at the junction barrier. More interestingly,
for the interface bound states near the continuous spectrum the effect of
surface pair breaking may result in a splitting of the bound states. In the
tunneling limit this can lead to a square root dependence of a nonequilibrium
Josephson current on the barrier transmision, which means an enhancement as
compared to the conventional critical current linear in the transmission.
Reduced broadening of bound states in NIS junctions due to surface pair
breaking is found.Comment: 27 pages, Latex fil
Universality versus material dependence of fluctuation forces between metallic wires
We calculate the Casimir interaction between two parallel wires and between a
wire and a metall plate. The dielectric properties of the objects are described
by the plasma, Drude and perfect metal models. We find that at asymptotically
large separation interactions involving plasma wires and/or plates are
independent of the material properties, but depend on the dc conductivity
for Drude wires. Counterintuitively, at intermediate separations the
interaction involving Drude wires can become independent of . At
smaller separations, we compute the interaction numerically and observe an
approach to the proximity approximation
Orientation-dependent Casimir force arising from highly anisotropic crystals: application to Bi2Sr2CaCu2O8+delta
We calculate the Casimir interaction between parallel planar crystals of Au
and the anisotropic cuprate superconductor Bi2Sr2CaCu2O8+delta (BSCCO), with
BSCCO's optical axis either parallel or perpendicular to the crystal surface,
using suitable generalizations of the Lifshitz theory. We find that the strong
anisotropy of the BSCCO permittivity gives rise to a difference in the Casimir
force between the two orientations of the optical axis, which depends on
distance and is of order 10-20% at the experimentally accessible separations 10
to 5000 nm.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review
Casimir torque
We develop a formalism for the calculation of the flow of angular momentum
carried by the fluctuating electromagnetic field within a cavity bounded by two
flat anisotropic materials. By generalizing a procedure employed recently for
the calculation of the Casimir force between arbitrary materials, we obtain an
expression for the torque between anisotropic plates in terms of their
reflection amplitude matrices. We evaluate the torque in 1D for ideal and
realistic model materials.Comment: 8 pages, 4 figs, Submitted to Proc. of QFEXT'05, to appear in J.
Phys.
Dispersion Interactions between Optically Anisotropic Cylinders at all Separations: Retardation Effects for Insulating and Semiconducting Single Wall Carbon Nanotubes
We derive the complete form of the van der Waals dispersion interaction
between two infinitely long anisotropic semiconducting/insulating thin
cylinders at all separations. The derivation is based on the general theory of
dispersion interactions between anisotropic media as formulated in [J. N.
Munday, D. Iannuzzi, Yu. S. Barash and F. Capasso, {\sl Phys. Rev. A} {\bf 71},
042102 (2005)]. This formulation is then used to calculate the dispersion
interactions between a pair of single walled carbon nanotubes at all
separations and all angles. Non-retarded and retarded forms of the interactions
are developed separately. The possibility of repulsive dispersion interactions
and non-monotonic dispersion interactions is discussed within the framework of
the new formulation
A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle
In this paper we describe an approach to Casimir Force problems that is
ultimately generalizable to all fields, boundary conditions, and cavity
geometries. This approach utilizes locally defined reflection amplitudes to
express the energy per unit area of any Casimir interaction. To demonstrate
this approach we solve a number of Casimir Force problems including the case of
uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a
typ
Self-consistent interface properties of d and s-wave superconductors
We develop a method to solve the Bogoliubov de Gennes equation for
superconductors self-consistently, using the recursion method. The method
allows the pairing interaction to be either local or non-local corresponding to
s and d-wave superconductivity, respectively. Using this method we examine the
properties of various S-N and S-S interfaces. In particular we calculate the
spatially varying density of states and order parameter for the following
geometries (i) s-wave superconductor to normal metal, (ii) d-wave
superconductor to normal metal, (iii) d-wave superconductor to s-wave
superconductor. We show that the density of states at the interface has a
complex structure including the effects of normal surface Friedel oscillations,
the spatially varying gap and Andeev states within the gap, and the subtle
effects associated with the interplay of the gap and the normal van Hove peaks
in the density of states. In the case of bulk d-wave superconductors the
surface leads to mixing of different order parameter symmetries near the
interface and substantial local filling in of the gap.Comment: 20 pages, Latex and 8 figure
Collective charge fluctuations and Casimir interactions for quasi one-dimensional metals
We investigate the Casimir interaction between two parallel metallic
cylinders and between a metallic cylinder and plate. The material properties of
the metallic objects are implemented by the plasma, Drude and perfect metal
model dielectric functions. We calculate the Casimir interaction numerically at
all separation distances and analytically at large separations. The
large-distance asymptotic interaction between one plasma cylinder parallel to
another plasma cylinder or plate does not depend on the material properties,
but for a Drude cylinder it depends on the dc conductivity . At
intermediate separations, for plasma cylinders the asymptotic interaction
depends on the plasma wave length while for Drude cylinders
the Casimir interaction can become independent of the material properties. We
confirm the analytical results by the numerics and show that at short
separations, the numerical results approach the proximity force approximation
- …
