88 research outputs found

    Advances in single carrier block modulation with frequency domain processing

    Get PDF
    International audienceThis special issue focuses on single carrier block modulation (SC-BM) with frequency domain processing. This class of modulation and multiple access schemes complements the orthogonal frequency division multiple access (OFDMA) and its variations. For example, LTE (the long term evolution of the 3GPP standard), and LTE-Advanced, employ OFDMA in the downlink (base stations to mobiles) and SC-FDMA, a version of SC-BM in the uplink (mobiles to base stations). The main reason for adapting the technology of SC-FDMA for uplink LTE is the fact that OFDMA has high "peak-to-average power ratio" (PAPR), which is a disadvantage for mobile devices that are limited by power availability. Besides its advantage of low PAPR, SC-BM technology has a similar performance/complexity to that of OFDMA, and simple frequency domain equalization methods for combating dispersive channels. There were 17 papers submitted to this special issue. All had merits, but the review process reduced the number of accepted papers to 9. The accepted papers cover a number of novel and advanced aspects of single carrier block modulation with frequency domain processing: near-optimal nonlinear and iterative equalization techniques; applications to CDMA, MIMO and ARQ; channel estimation; and application to free-space optical transmission. Following is a summary of the papers. In the paper "Iterative Successive Interference Cancellation for Quasi-Synchronous Block Spread CDMA Based on the Orders of the Times of Arrival", Wang, Bocus, and Coon [1] describe an interference cancellation scheme based on the times of arrival of the signals from different users, and they show that for practical channels this ordering criterion is equivalent to ordering with respect to decreasing average SINR. In "Complexity Reduced MLD Based on QR Decomposition in OFDM MIMO Multiplexing with Frequency Domain Spreading and Code Multiplexing", Nagatomi, Kawai, and Higuchi [2] propose a reduced-complexity maximum likelihood signal detection method for MIMO-OFDM systems with frequency-domain spreading and code multiplexing. They show how to exploit signal orthogonalization based on QR decomposition of the product of the channel and spreading code matrices in the frequency domain to obtain significant complexity reductions. In "Frequency-domain Block Signal detection with QRM-MLD for Training Sequence-aided Single-carrier Transmission", Yamamoto, Takeda and Adachi [3] propose replacement of the cyclic prefix with a known training sequence. The object is to improve BER performance of an equalization scheme which uses QR decomposition with M-algorithm detection, while keeping the number of surviving paths low for reduced complexity. The scheme is especially effective for 16QAM and 64QAM modulation. The paper "Joint Iterative Tx/Rx MMSE-FDE and ISI Cancellation for Single-carrier Hybrid ARQ with Chase Combining" by Takeda and Adachi [4] applies transmitter and receiver equalization and iterative intersymbol interference cancellation to a system with hybrid ARQ transmission, Chase combining and antenna diversity. The equalizer parameters at both transmitter and receiver are optimized for each retransmission. The paper "Novel Techniques of Single Carrier Frequency Domain Equalization for Optical Wireless Communications" by Acolaste, Bar-Ness, and Wilson [5] investigates the application of single-carrier frequency-domain equalization to diffuse optical wireless communications and demonstrates its advantages over OFDM in terms of reduced PAPR and improved error rate in the presence of LED nonlinearity. In the paper "Semi-Blind Channel Estimation for IFDMA in Case of Channels with Large Delay Spreads", Sohl and Klein [6] propose a subspace-based channel estimation algorithm which can cope with large delay spreads. In previous work on IFDMA, the number of channel taps that can be estimated was limited to the number of subcarriers per user. The subspace analysis in this paper relaxes this constraint and increases the number of taps that can be estimated. The paper "Channel Frequency response Estimation for MIMO with Systems with Frequency-Domain Equalization " by Yang, Shi, Chew, and Tjhung [7] suggests a training-based channel frequency response (CFR) estimation scheme which is hardware efficient when integrated with and SC-FDE and space time coding (STC) in MIMO Systems. An MSE analysis of this CFR estimation scheme is provided, which considered linear estimators based on both LS and minimum MSE criteria. Also with a given constraint which effectively limits the transmit power of the training signals, the paper investigates the optimal design of training signals under different a priori knowledge of the channel statistics. For the special case of 2 transmit antennas, it was demonstrated that CFR estimation could be implemented in adaptive manner. The paper by Dang, Ruder, Schober and Gerstacker [8], "MMSE Beamforming for SC-FDMA Transmission over MIMO ISI Channels", derives minimum mean squared error beamforming strategies for multi-antenna reception, as well as further modifications to reduce the transmitted peak to average power ratios. The paper by Nishino, Tanahashi, and Ochiai [9], "A Bit Labeling Design for Trellis-Shaped Single-Carrier PSK with PAPR Reduction", investigates application of trellis shaping to reduce the PAPR of band-limited single-carrier PSK signals. The authors demonstrate that the uncoded bit error rate and PAPR reduction capability of trellis shaping is highly dependent on bit labeling. They propose a bit labeling scheme for high-order PSK constellation that can efficiently reduce PAPR while achieving BER performance comparable to that of Gray labeling

    Serratamolide is a hemolytic factor produced by Serratia marcescens

    Get PDF
    Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. © 2012 Shanks et al

    Serratia marcescens internalization and replication in human bladder epithelial cells

    Get PDF
    BACKGROUND: Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. METHODS: Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. RESULTS: We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. CONCLUSION: The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections

    A Dominant-Negative Approach That Prevents Diphthamide Formation Confers Resistance to Pseudomonas Exotoxin A and Diphtheria Toxin

    Get PDF
    Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments
    • …
    corecore