15,609 research outputs found

    Doping dependent charge injection and band alignment in organic field-effect transistors

    Full text link
    We have studied metal/organic semiconductor charge injection in poly(3-hexylthiophene) (P3HT) field-effect transistors with Pt and Au electrodes as a function of annealing in vacuum. At low impurity dopant densities, Au/P3HT contact resistances increase and become nonohmic. In contrast, Pt/P3HT contacts remain ohmic even at far lower doping. Ultraviolet photoemission spectroscopy (UPS) reveals that metal/P3HT band alignment shifts dramatically as samples are dedoped, leading to an increased injection barrier for holes, with a greater shift for Au/P3HT. These results demonstrate that doping can drastically alter band alignment and the charge injection process at metal/organic interfaces.Comment: 5 pages, 4 figure

    Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect

    Get PDF
    This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), UK under a Programme Grant ( EP/I034548/1) “The Quest for Ultimate Electromagnetics using Spatial Transformations (QUEST

    High frequency meta-ferroelectrics by inverse design

    Get PDF

    Accurate Modelling of Left-Handed Metamaterials Using Finite-Difference Time-Domain Method with Spatial Averaging at the Boundaries

    Full text link
    The accuracy of finite-difference time-domain (FDTD) modelling of left-handed metamaterials (LHMs) is dramatically improved by using an averaging technique along the boundaries of LHM slabs. The material frequency dispersion of LHMs is taken into account using auxiliary differential equation (ADE) based dispersive FDTD methods. The dispersive FDTD method with averaged permittivity along the material boundaries is implemented for a two-dimensional (2-D) transverse electric (TE) case. A mismatch between analytical and numerical material parameters (e.g. permittivity and permeability) introduced by the time discretisation in FDTD is demonstrated. The expression of numerical permittivity is formulated and it is suggested to use corrected permittivity in FDTD simulations in order to model LHM slabs with their desired parameters. The influence of switching time of source on the oscillation of field intensity is analysed. It is shown that there exists an optimum value which leads to fast convergence in simulations.Comment: 17 pages, 7 figures, submitted to Journal of Optics A Nanometa special issu

    Opposition-based Memetic Search for the Maximum Diversity Problem

    Get PDF
    As a usual model for a variety of practical applications, the maximum diversity problem (MDP) is computational challenging. In this paper, we present an opposition-based memetic algorithm (OBMA) for solving MDP, which integrates the concept of opposition-based learning (OBL) into the wellknown memetic search framework. OBMA explores both candidate solutions and their opposite solutions during its initialization and evolution processes. Combined with a powerful local optimization procedure and a rank-based quality-and-distance pool updating strategy, OBMA establishes a suitable balance between exploration and exploitation of its search process. Computational results on 80 popular MDP benchmark instances show that the proposed algorithm matches the best-known solutions for most of instances, and finds improved best solutions (new lower bounds) for 22 instances. We provide experimental evidences to highlight the beneficial effect of opposition-based learning for solving MDP

    Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter

    Get PDF
    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions in January 2013 are simulated using the fully coupled online Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the aerosol's radiative (direct and semi-direct) and indirect effects. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of −18.9 μg m−3 (−15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W m−2, 3.2°C, 0.8 m s−1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and stabilizing lower atmosphere, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2). Surface O3 mixing ratio is reduced by up to 6.9 ppb (parts per billion) due to reduced incoming solar radiation and lower temperature, while the aerosol feedbacks on PM2.5 mass concentrations show some spatial variations. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River delta, the Pearl River delta, and central China. Although the aerosol–radiation–cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol–radiation–cloud feedbacks for real-time air quality forecasting under haze conditions

    Dynamic Provable Data Possession Protocols with Public Verifiability and Data Privacy

    Full text link
    Cloud storage services have become accessible and used by everyone. Nevertheless, stored data are dependable on the behavior of the cloud servers, and losses and damages often occur. One solution is to regularly audit the cloud servers in order to check the integrity of the stored data. The Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy presented in ACISP'15 is a straightforward design of such solution. However, this scheme is threatened by several attacks. In this paper, we carefully recall the definition of this scheme as well as explain how its security is dramatically menaced. Moreover, we proposed two new constructions for Dynamic Provable Data Possession scheme with Public Verifiability and Data Privacy based on the scheme presented in ACISP'15, one using Index Hash Tables and one based on Merkle Hash Trees. We show that the two schemes are secure and privacy-preserving in the random oracle model.Comment: ISPEC 201

    Improving probability learning based local search for graph coloring

    Get PDF
    This paper presents an improved probability learning based local search algorithm for the well-known graph coloring problem. The algorithm iterates through three distinct phases: a starting coloring generation phase based on a probability matrix, a heuristic coloring improvement phase and a learning based probability updating phase. The method maintains a dynamically updated probability matrix which specifies the chance for a vertex to belong to each color group. To explore the specific feature of the graph coloring problem where color groups are interchangeable and to avoid the difficulty posed by symmetric solutions, a group matching procedure is used to find the group-to-group correspondence between a starting coloring and its improved coloring. Additionally, by considering the optimization phase as a black box, we adopt the popular tabu search coloring procedure for the coloring improvement phase. We show extensive computational results on the well-known DIMACS benchmark instances and comparisons with state-of-the-art coloring algorithms
    • …
    corecore