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Abstract: Composites with subwavelength features exhibit effective properties that depend on
microstructure morphology and materials, which can be adjusted to obtain enhanced characteris-
tics. We detail the systematic design of electromagnetic metamaterials composed of dielectric
inclusions in a ferroelectric matrix that, under an applied voltage, present an optimized effective
tunability higher than the bulk due to a nonlinear local electric field enhancement. The effect
of volume fraction, losses, and biasing field on homogenized properties is investigated and the
analysis of the photonic band diagram is carried out, providing the frequency dependence of the
anisotropic effective index and tunability. Such metaceramics can be used in microwave antennas
and components with higher reconfigurability and reduced power consumption.
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1. Introduction

Multifunctional and reconfigurable systems are increasingly demanded for a wide range of
applications in Electromagnetics and Photonics [1–3]. In parallel, the development of artificial
media and metamaterials [4,5], allowing unprecedented control of electromagnetic (EM) waves
by carefully engineered subwavelength structures, has stimulated the research interest in tunable
materials. Indeed, the ability to introduce tunable components has been established as a
straightforward route to EM and metamaterials reconfigurability, albeit the added fabrication
complexity in comparison with static devices. As a matter of fact, it is envisioned that
reconfigurable metamaterial structures have the potential to mitigate some of the most significant
limitations of static metamaterials such as narrow bandwidth operations, high losses, and
tolerance sensitivity. Often, in addition to the necessary control logic, adding reconfigurability to
a metamaterial structure requires the introduction of extra components and materials to a standard
design, hence potentially affecting the system’s performance, power consumption and weight.
Consequently, there are still significant theoretical and technical obstacles to the production and
deployment of reconfigurable metamaterials within commercial products, particularly regarding
versatility, operational bandwidth, performance, complexity of realization, robustness, speed of
tuning, and costs. Those engineering challenges are driving efforts of academia and industry
towards new technological solutions and experimental testing of reconfigurable metamaterials,
which is currently a very active area of research. Experimental demonstrations across frequency
ranges have been reported and include microwave devices [6,7], lenses [8,9] tunable band
diagrams [10,11], reconfigurable orbital angular momentum [12], topological insulators [13],
infrared emitters [14] negative effective index media [15–17], hyperbolic metamaterials [18] and
optically controlled metasurfaces [19] using different stimuli and tuning mechanisms such as
mechanically adjustable elements [20–24], microfluidics [25,26], graphene [27] or liquid crystals
[28,29].
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In microwave engineering, ferroelectric materials play a crucial role in applications needing
reconfigurability, such as antenna beam steering, phase shifters, filters, and tunable power splitters,
[30]. Both thin films and bulk ceramics are used for frequency agile components [31,32] and
metamaterials [15,33]. Ferroelectric materials possess a strong nonlinear dependence of their
permittivity ε on an applied electric field E, with key requirements for antenna and microwave
applications being large tunability and low losses. The permittivity values are usually high even
at microwave frequencies, and therefore it has been considered to mix ferroelectric materials
with low-index and low-loss non-tunable dielectrics or to synthesize porous ceramics in order to
reduce both permittivity values and losses. The effective parameters of those composites have
been investigated [34–37] using analytical effective medium approaches for low filling fraction
of dielectric and have been successfully compared with numerical simulations and experiments.
It has been shown that the permittivity can be reduced while losses are much less sensitive to the
dielectric phase addition, and in some situations lead to a small increase of the tunability of the
mixtures. Recently, refined theoretical and numerical models have been proposed [38–40], and
the predicted behaviour compared well to experimental data [41]. Those methods account for the
nonlinear coupling of electrostatic biasing and field dependent permittivity. It was shown that
the permittivity can be reduced while maintaining high tunability and low losses, due to local
field enhancement in the ferroelectric phase.

We propose here to design the microstructure of metamaterials composed of a ferroelectric
and low index non tunable dielectric (see Fig. 1) through topology optimization [42]. Our aim is
to find structures with desired effective properties: high tunability and minimal losses. Using a
nonlinear coupled model that takes into consideration the subwavelength field enhancement and
ferroelectric response, we systematically obtain the material distribution in the unit cell and study
the effect of volume fraction and biasing field strength. Furthermore, we conduct a multi-objective
optimization for maximal tunability and minimal losses and present the Pareto front, revealing a
trade-off between the two characteristics. We finally study the photonic bands of a particular
example of optimized geometry, showing an adjustable bandgap, derive the frequency dependence
of the effective permittivity and compare the results with the homogenization approach.

Fig. 1. Unit cell of the proposed metamaterials. The structure is periodic along x and y,
and is composed of a dielectric inclusion with permittivity εd in a ferroelectric background
with a field dependent permittivity εf(E). A uniform electric field EB is applied to the
metamaterial along the x direction.

2. Methods

The study is restricted to two-dimensional metamaterials with square unit cellΩ of size d<<λ and
periodic boundary conditions, where λ is the wavelength under consideration. Since we target
the microwave frequency range (f = 3.8 GHz, λ ≃ 8 cm), the maximal value for the periodicity is
roughly λ/10 = 8 mm. On the other hand, we consider a bulk ferroelectric so that nano-scale
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effects such as domain walls motion [43], and micro-scale grains (ℓ ≃ 10 µm, [44]) are not
resolved in the present model but are incorporated in the dielectric permittivity. This places a
minimal length scale for the validity of the study at around 10ℓ ≃ 100 µm. The materials we
employ are barium strontium titanate (BST) and a low index (εd = 3) dielectric such as common
thermoplastic polymer acrylonitrile butadiene styrene (ABS).

2.1. Coupling nonlinear ferroelectric permittivity and electrostatics

The tunability of barium strontium titanate BaxSr1−xTiO3 with a barium ratio of x = 0.6 samples
fabricated using a conventional sintering method was measured in the static regime (DC) and at
microwave frequencies (MW) [44] and fitted to a Vendik model [45] to represent the electric
field dependence of the permittivity:

εf(E) =
εf(0)[︁

(ξ + 1)1/2 + ξ
]︁2/3
+
[︁
(ξ + 1)1/2 − ξ

]︁2/3
− 1

(1)

with ξ = E/EN, εf(0) = 3050 and EN = 1.65 kV/mm at DC, εf(0) = 165 and EN = 1.12 kV/mm
at f = 3.8 GHz. Effects of temperature and mechanical stress on the permittivity are neglected
to simplify the model and focus on the electromagnetic properties of the composites. While
multiple physical processes should be included since ferroelectric properties depends strongly on
temperature, this is out of the scope of this paper.

To calculate the total electric field in the metamaterial, one has to solve for the potential V
satisfying Gauss’s law for a given permittivity distribution ε:

∇·(ε∇V) = 0 (2)

biased by a constant uniform electric field EB = EBx. The electric field E = −∇V derived from
the solution of Eq. (2) depends on the permittivity distribution, which itself depends on the
electric field. The coupled system formed of Eqs. (1) and (2) is solved iteratively using a Picard
method until convergence on the norm of the electric field | |Ei+1 − Ei | |<10−5. Although initially
constant, the permittivity in the ferroelectric phase is spatially varying due to the non-uniform
distribution of the total electric field.

2.2. Homogenized properties

The aim of homogenization approaches is to retrieve a simplified, but almost equally precise,
description of the material response by averaging out material properties at the subwavelength
level. Research in this area has been deeply linked to and influenced by the development of
metamaterials and their application in physics, particularly for electromagnetic phenomena.
Analytical models for the effective permittivity previously employed in the literature such as
Maxwell-Garnett or Bruggeman theories are limited to a few canonical shapes of the inclusions,
and cannot handle arbitrary geometries and media with spatially varying properties, which
has to be accounted for in our model because of the field induced local permittivity change.
In this study, the effective permittivity of the metamaterials is calculated using a two scale
convergence homogenization technique [46,47]. We will focus on 2D geometries and TM
polarization (since the TE polarization effective permittivity is trivially the arithmetic mean of
the basic components permittivity), resulting in a scalar wave equation for the z component of
the magnetic field. The main idea is to select two scales in the study: a microscopic one (the
size of the unit cell) and a mesoscopic one (the size of the bulk), controlled by a real parameter
ν>0. Denoting r = (x, y)T the position vector, the approach consists in introducing the ansatz
H(r) = H0(r, r/ν) + νH1(r, r/ν) + ν2H2(r, r/ν) + · · · for the magnetic field H solution of time
harmonic Maxwell’s equation and performing an asymptotic analysis as ν → 0. One then needs
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to find the solutions ψj of two annex problems Pj, j = x, y:

∇·
[︁
ε∇(ψj + rj)

]︁
= 0, (3)

The homogenized permittivity ε̃ is then obtained as:

ε̃ = ⟨ε⟩I + φ, (4)

where ⟨.⟩ denotes the mean value over the unit cell, I is the 2×2 identity matrix and φij = ⟨ε∇ψi⟩j
are correction terms. This analysis allows us to obtain the effective parameters at higher
frequencies, in contrast with capacitance-based models valid in the electrostatic regime. Contrarily
to most homogenization procedures that are based on a quasi-static approximation, in the two
scale convergence method, the frequency is fixed and the characteristic size of the system (the
periodicity of the composites) tends to zero, making the study of the frequency dependence of
the effective parameters possible.

2.3. Topology optimization

Inverse design, where a specific target is searched according to engineering constraints, is an
actively researched topic in the nanophotonics and metamaterial community [48–50]. Topology
optimization has led to the design of a large range of devices such as invisibility cloaks [51,52],
illusion devices [53], metasurfaces [54,55] and metamaterials with tailored properties [56–59],
showing non intuitive material distributions, allowing to manipulate light matter interaction with
unprecedented capability. In the topology optimization procedure, the permittivity distribution
is parametrized by a continuous scalar density function ρ ∈ [0, 1]. To avoid small features and
pathological “chessboard” patterns, we use a filtered density obtained by solving the following
Helmholtz equation [60] with periodic boundary conditions on Ω:

−R2∇2 ρ̃ + ρ̃ = ρ, (5)

with R a real positive parameter characterizing the filter radius (R = 0.05d in the rest of the
paper). In order to enforce a binary design, we apply a threshold projection [61,62]:

ρ̂(ρ̃) =
tanh(βν) + tanh(β(ρ̃ − ν))
tanh(βν) + tanh(β(1 − ν))

, (6)

with ν = 1/2 and β a real positive parameter characterizing the strength of the projection and is
increased during the course of the optimization process. Finally, the permittivity is given by the
solid isotropic material interpolation (SIMP) method [63] as:

ε(ρ̂) = εmin + ρ̂
q(εmax − εmin), (7)

where q is a penalty factor (q = 1 here), εmin = εd = 3 (the permittivity of the dielectric phase)
and εmax = εf(E) (ferroelectric phase). The gradient based optimization is initialized with
a density ρ0 and performed for 20 iterations or until convergence on the objective or design
variables. This step is then repeated for n global iterations setting β = 2n, where n is an integer
between 0 and 7, and initializing the algorithm with the optimized density obtained at the previous
step.

3. Results

Numerical results are obtained using Python and open source libraries: Eqs. (1), (2), (3) and
(5) are solved by the finite element method with the fenics library [64], the sensitivity of the
objective g with respect to the design variables p are computed with the adjoint method [65]
using automatic differentiation through dolfin-adjoint [66] and the method of moving
asymptotes (MMA, [67]) is employed for the gradient based optimization with the nlopt
package [68].
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3.1. Maximizing tunability

The first objective is to maximize the tunability of the composites along the direction of the
applied electric field defined as η̃(E) = ε̃xx(0)/ε̃xx(E):

max
ρ

σ(E) =
η̃(E)
η(E)

− 1

s.t. fmin<f<fmax

(8)

where σ is the tunability enhancement compared to the bulk BST tunability η(E) = εf(0)/εf(E).
We enforce a constraint on the volume fraction f = ⟨ρ⟩ of ferroelectric (i.e. the proportion of
BST in the metamaterial). Indeed, there is an infinity of possible material distribution with the
same volume fraction, but they would lead to different effective material properties. Our aim is to
find the distribution that maximize our optimization objective. Those constraints are imposed as
an inequality because the MMA algorithm we use cannot enforce equality constraints. To target
approximately a given volume fraction fcons, we set fmin = fcons − δf and fmax = fcons + δf and δf
is decreased linearly from 0.1 to 0.01 during the course of the optimization. The optimization is
initialized with a density ρ0 = 1 − exp(−(x2 + y2)/r2

f ), with rf =
√︁
(1 − f )/π log 2). Additionally,

our numerical experiments have shown that field enhancement is suppressed when the inclusion
are connected along the y-axis, we thus constrain further the material to be ferroelectric (i.e.
ρ = 1) at the top and bottom of the unit cell in a strip of height 0.05d.

Results are displayed on Fig. (2(a)), where we plot the effective tunability enhancement of
structures optimized for different volume constraints and a biasing field of 1 kV/mm. Tunability
higher than bulk BST is achieved in each case except for the smallest volume fraction where it is
4% weaker. A maximum enhancement of 34% is achieved for a structure containing 83% of
ferroelectric, which indicates a trade-off between composites containing more tunable material
and the volume of dielectric phase which induces a field concentration within the unit cell.
Note that the obtained effective properties are anisotropic due to to the asymmetry of material
distribution, but we are only focusing on the properties parallel to the applied electric field. As
f increases, both components of the effective permittivity tensor increase (see Table (1)), with
strong anisotropy for lower values of filling fraction, which correspond to structures connected
along the x-axis. As the target volume fraction increases, the topology evolves from layered
structure along y to cross like shapes, a “bow tie” looking dielectric structure for the highest
enhancement (f = 83%) to a needle like inclusion with long side along y for f = 83%. These
non-trivial topologies show the generality and versatility of the approach which does not require
any geometrical parametrization, generating freeform microstructures. The field maps of the
electric field and corresponding permittivity in subfigures (2(b-e)) show that the field enhancement
is maximal between the dielectric parts of the microstructure, which leads to a localized tuning
in the ceramic phase.

Table 1. Effective permittivity tensor components of unbiased composites for
different filling fractions corresponding to the optimized topologies given in

Fig. (2)

f 0.27 0.47 0.67 0.83 0.93

ε̃xx/εf(0) 0.22 0.29 0.33 0.5 0.61

ε̃yy/εf(0) 0.03 0.04 0.53 0.79 0.92

ε̃xx/ε̃yy 7.33 7.25 0.62 0.63 0.66

The previous optimization was performed for a fixed biasing field of 1 kV/mm. In order to
assess the response of the metamaterials, we computed the effective tunability as a function of E
(see Fig. (3)). The maximal values of tunability enhancement are obtained as expected around 1
kV/mm. We note that the permittivity model has an inflexion point around E = 1.18 kV/mm
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Fig. 2. Maximizing tunability in composites. (a): Tunability enhancement σ as a function
of ferroelectric volume fraction f = ⟨ρ⟩. The insets show the corresponding optimized
material distribution in the unit cell (dark: ferroelectric, light: dielectric). (b-e): permittivity
(b and d) and electric field (c and e, logarithmic scale) distribution for an applied field
E = 1 kV/mm corresponding to optimized structures with filling fraction f = 0.57 (b and c)
and f = 0.83 (d and e).

so that a larger local field variation leads to a stronger change in permittivity. The improved
tunability is maintained, albeit smaller, for different biasing intensities except at higher fields.
Further optimization studies not reported here with lower and higher field strength led to similar
material topologies, indicating the robustness of the design process.

Fig. 3. Tunability enhancement σ as a function of biasing electric field E, for various filling
fraction corresponding to the optimized structures of Fig. (2).

3.2. Bi-objective optimization: high tunability and low loss metamaterials

Our next aim is to find metamaterial structures that will at the same time enhance the effective
tunability while reducing the effective losses. We now use a complex permittivity value εC

f
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with the same dependence on the electric field (1) but with constant value of the loss tangent
tan δf = 10−3, that is εC

f (E) = εf(E) (1 − tan δf). We define the loss reduction factor as:

θ(E) = 1 −
tan δ̃xx(E)
tan δf(E)

(9)

where the homogenized loss tangent xx component is tan δ̃xx(E) = −Im ε̃xx(E)/Re ε̃xx(E). We
then have to solve the following maximization problem:

min
ρ

pσ(E) + (1 − p) θ(E) s.t. fmin<f<fmax (10)

where the weighting parameter p ∈ [0, 1] is varied to give more importance to one objective or
the other. Note that here the effective tunability is defined with the real parts of the homogenized
permittivity: η̃(E) = Re ε̃xx(0)/Re ε̃xx(E). The applied electric field is 1KV/mm and the target
volume fraction 50%.

The Pareto front of this bi-objective problem is given in Fig. (4), where each point represent a
different value for p. One can notice that there is a trade-off between those two concurrent goals
and observe two regimes: the first with enhanced tunability (18% to 25%) and moderate loss
reduction (18% to 24%), and the second where the tunability is weaker than bulk BST (-11%
to -7%) but with a stronger decrease in losses (33% to 43%). Depending on the application
requirements, one may choose between different topologies to mitigate the advantages and
drawbacks of the two material properties. Note that the Pareto front is effectively discontinuous,
and is jumping in between the two regimes of high tunability/moderate loss and low tunability/low
losses. This is unrelated to the parameter p which is just a numerical coefficient used in the
optimization procedure.

Fig. 4. Pareto front of the bi-objective optimization problem for maximizing tunability and
minimizing losses. Corresponding optimized topologies for four representative points are
shown as insets.

We now look at the response of the optimized composites as the biasing field is varied. A metric
for the performance of ceramics that takes into account tunability and losses is the commutation
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quality factor (CQF) defined as:

K(E) =
(η(E) − 1)2

η(E) tan δ(E) tan δ(0)
. (11)

For the structures associated with the second region of the Pareto set (p = 0.10 and p = 0.25),
the tunability decreases significantly as the field increases (see Fig. (5(a))), while losses are
strongly reduced, and this reduction actually increases with biasing strength (see Fig. (5(b))). We
show in Fig. (5(c)) the normalized CQF defined as κ = K̃/Kf, where K̃ and Kf correspond to the
CQF for the homogenized metamaterial and bulk BST respectively. For p = 0.10, the QCF is
reduced while it is of the same order than than the bulk for the case p = 0.25, for all electric
fields. This highlights the limits of such a metric where it is hard to distinguish independently
the contributions of losses and tunability: indeed one can have, as the later case, a material with
reduced tunability and losses with similar QCF. For the metaferroelectrics belonging to the other
optimized region (p = 0.35 and p = 0.95), a maximum of tunability enhancement is observed as
expected around 1KV/mm and decreasing for higher fields, similarly to the lossless case. Losses
are reduced significantly and the stronger the bias, the smaller the loss tangent. Finally, in both
cases the associated QCF is much larger than the bulk (around 4 times at 1KV/mm) and decreases
as E increases. The enhanced performances reported here are clearly a trade-off in between those
two conflicting objectives (losses and tunability), but other considerations may come into play in
the choice of and adequate metamaterial such as the volume fraction or the effective anisotropy.

Fig. 5. Tunability enhancement σ (a), loss tangent reduction θ (b) and normalized quality
factor (c) as a function of biasing electric field, for different value of p corresponding to the
optimized structures of Fig. (4).

4. Photonic bands properties

We now investigate the spectral properties of one example of optimized composite (Section (3.1)
for f = 0.47). The eigenvalues kn = ωn/c, of Maxwell’s operator for TM polarization, i.e the
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solutions of:
−∇·(ε−1∇Hn) = k2

nHn, (12)

with c the speed of light in a vacuum, ωn the eigenpulsations and Hn the eigenmodes, subject to
Bloch-periodic conditions with wavevector k = (kx, ky)

T. This spectral problem is solved using
the open-source finite element package GetDP [69] with its interface to the SLEPc library [70].
The effective permittivity can be obtained from the band diagram according to:

ε̃−1
ij =

(︃
∂ω2

∂ki∂kj

)︃
. (13)

Figure (6(a)) shows the photonic band diagram associated with the optimized lossless composite
for f = 0.47 obtained in Section (3.1) (see inset in Fig. (2) for the unit cell topology) and observe
a tunable band gap between the first and second bands. When unbiased, the photonic band gap is
centred at ω = 0.0829ω0 with a width of w = 0.0173ω0, and when the electric field is applied,
its centre is blueshifted to 0.0848ω0 (∼2%) and slightly broadened (w = 0.0175ω0, ∼0.6%).
Another much narrower bandgap between the second and third bands is present as well, with
centre ω = 0.114ω0 (resp. 0.118ω0) and width 0.0017ω0 (resp. 0.0019ω0) for the unbiased and
biased case respectively. Note that while in the first case the two band gap overlap when the
electric field is on or off, in the later case the two forbidden propagation bands are disjoint since
the bandwidth is smaller.

Fig. 6. Spectral properties of an optimized metaceramic. The structured is the one obtained
from Section (3.1) for f = 0.47.) (a): Band diagram, where the frequencies have been
normalized with respect toω0 = 2πc/d. Green solid lines: bias on, dashed red lines: bias off.
(b): Isofrequency contours for the first band. The contours give the normalized frequency
ωd/(2πc) in the first Brillouin zone. Solid lines: bias on, dashed lines: bias off.

The isofrequency contours for the first band are displayed on (6(b)). When no field is applied
(full lines), we have elliptical contours with long axis along ky, meaning a diagonal anisotropic
effective index with higher values along x, which is consistent with the results of the previous
homogenization study. This is valid for ω → 0, and when the frequency increases so does the
effective index. Applying a voltage on the photonic crystal deforms the isofrequency contours,
increasing the semi-axis of the ellipse along ky but almost keeping the same along kx: in other
words, the tunability is high in the x direction but practically negligible in the orthogonal direction,
in agreement with the results from Section (3.1).

To corroborate those qualitative results, we extracted the effective permittivity tensor from
the first band and plotted the results in Fig. (7(a)). Firstly, the values agree very well with those
obtained with two scale homogenization (see the markers at ω = 0), and we observe an increase
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of the components of the effective permittivity. The permittivity along x is enhanced further as
we get closer to the edge of the gap, and hence, due to the shift of the bandgap from applying a
voltage, the tunability along x is increased, reaching a value of around 4 at ω = 0.041ω0 (see
Fig. (7(b))). This effect, even if it is narrowband, provides a way to even further enhance the
tunability in this kind of metastructures. Note that the design was optimized to enhance the
homogenized tunability, not to maximize bandgaps / tunability frequency dependence, which is
out of the scope of this paper.

Fig. 7. Frequency dispersion of the effective parameters obtained from the first photonic
band. (a) effective permittivity: xx component (solid lines) and yy component (dashed lines)
for unbiased (red) and biased (green) metamaterial. (b) effective tunability: xx component
(solid orange line) and yy component (dashed blue line). In both figures, the markers at
ω = 0 are the result obtained with two scale homogenization (circles for xx component and
squares for yy component)

5. Conclusion

We presented an inverse design methodology to obtain microstructures of ferroelectric/dielectric
composites with desired and enhanced properties. This inverse homogenization approach
allows us to find the material distribution within the periodic unit cell that gives a maximized
effective tunability for a given volume fraction of ceramic. Tunability enhancement as high
as 34% compared to bulk BST for a filling fraction of 87% are obtained. Taking dissipation
into account, we have shown that one has to mitigate two competing objectives, namely high
tunability and low losses. In addition, we have studied the spectral properties of one optimized
photonic crystal, showing a tunable bandgaps, frequency dependent enhanced tunability and
confirming the homogenization approach. Extension to 3D metamaterial topologies, fabrication
and experimental validation of the designed composites will be the subject of future studies. The
method proposed here provide guidelines for the systematic design of metamaterials with desired
properties, allowing further control of electromagnetic waves in antennas and radio frequency
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applications. The proposed designs can provide a range of permittivity values suitable for instance
for the implementation of graded index lenses employed in beam steering antennas. At the same
time, the optimized tunability would increase the reconfigurability of such devices, avoiding the
need for complex feed network. On the other hand, a co-design of and integrated biasing network
of electrodes will be needed. The general approach followed here can be applied to other type of
tunable systems in different frequency ranges where local field enhancement and amplification
is relevant, including for instance liquid crystals based devices, ferromagnetic metamaterials
and field-enhanced carrier dynamics in doped semiconductors. Finally, since ferroelectric
material behaviour is inherently governed by multiple physical processes, it would be of great
interest to optimize in parallel the effective electro-mechanical and piezoelectric properties of
metaferroelectrics, in order for example to mitigate the brittleness of ceramic materials and obtain
composites with high tunability, low losses and strong mechanical compliance.
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