188 research outputs found
Speckles and their dynamics for structured target illumination: optical spatial filtering velocimetry
High sensitive X-ray films to detect electron showers in 100 GeV region
Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons
High energy electrons beyond 100 GEV observed by emulsion chamber
Much efforts have been expended to observe the spectrum of electrons in the high energy region with large area emulsion chambers exposed at balloon altitudes, and now 15 electrons beyond 1 TeV have been observed. The observed integral flux at 1 TeV is (3.24 + or - 0.87)x10(-5)/sq m sec sr. The statistics of the data around a few hundred GeV are also improving by using new shower detecting films of high sensitivity. The astrophysical significance of the observed spectrum are discussed for the propagation of electrons based on the leaky box and the nested leaky box model
Statics and dynamics of domain patterns in hexagonal-orthorhombic ferroelastics
We study the statics and the dynamics of domain patterns in proper
hexagonal-orthorhombic ferroelastics; these patterns are of particular interest
because they provide a rare physical realization of disclinations in crystals.
Both our static and dynamical theories are based entirely on classical,
nonlinear elasticity theory; we use the minimal theory consistent with
stability, symmetry and ability to explain qualitatively the observed patterns.
After scaling, the only parameters of the static theory are a temperature
variable and a stiffness variable. For moderate to large stiffness, our static
results show nested stars, unnested stars, fans and other nodes, triangular and
trapezoidal regions of trapped hexagonal phase, etc observed in electron
microscopy of Ta4N and Mg-Cd alloys, and also in lead orthovanadate (which is
trigonal-monoclinic); we even find imperfections in some nodes, like those
observed. For small stiffness, we find patterns like those observed in the
mineral Mg-cordierite. Our dynamical studies of growth and relaxation show the
formation of these static patterns, and also transitory structures such as
12-armed bursts, streamers and striations which are also seen experimentally.
The major aspects of the growth-relaxation process are quite unlike those in
systems with conventional order parameters, for it is inherently nonlocal; for
example, the changes from one snapshot to the next are not predictable by
inspection.Comment: 9 pages, 3 figures (1 b&w, 2 colour); animations may be viewed at
http://huron.physics.utoronto.ca/~curnoe/sim.htm
Monoclinic phase in the relaxor-based piezo-/ ferroelectric Pb(MgNb-PbTiO system
A ferroelectric monoclinic phase of space group ( type) has been
discovered in 0.65Pb(MgNb-0.35PbTiO by means of high
resolution synchrotron X-ray diffraction. It appears at room temperature in a
single crystal previously poled under an electric field of 43 kV/cm applied
along the pseudocubic [001] direction, in the region of the phase diagram
around the morphotropic phase boundary between the rhombohedral (R3m) and the
tetragonal (P4mm) phases. The monoclinic phase has lattice parameters a = 5.692
A, b = 5.679 A, c = 4.050 A and = , with the b-axis
oriented along the pseudo-cubic [110] direction . It is similar to the
monoclinic phase observed in PbZrTiO, but different from that
recently found in Pb(ZnNb-PbTiO, which is of space
group ( type).Comment: Revised version after referees' comments. PDF file. 6 pages, 4
figures embedde
Atom cooling and trapping by disorder
We demonstrate the possibility of three-dimensional cooling of neutral atoms
by illuminating them with two counterpropagating laser beams of mutually
orthogonal linear polarization, where one of the lasers is a speckle field,
i.e. a highly disordered but stationary coherent light field. This
configuration gives rise to atom cooling in the transverse plane via a Sisyphus
cooling mechanism similar to the one known in standard two-dimensional optical
lattices formed by several plane laser waves. However, striking differences
occur in the spatial diffusion coefficients as well as in local properties of
the trapped atoms.Comment: 11 figures (postscript
Broad-band properties of the hard X-ray cataclysmic variables IGR J00234+6141 and 1RXS J213344.1+510725
A significant number of cataclysmic variables were detected as hard X-ray
sources in the INTEGRAL survey, most of them of the magnetic intermediate polar
type. We present a detailed X-ray broad-band study of two new sources, IGR
J00234+6141 and 1RXS J213344.1+510725, that allow us to classify them as secure
members of the intermediate polar class. Timing and spectral analysis of IGR
J00234+6141 are based on a XMM-Newton observation and INTEGRAL publicly
available data. For 1RXS J213344.1+510725 we use XMM-Newton and Suzaku
observations at different epochs, as well as INTEGRAL publicly available data.
We determine a spin period of 561.64 +/- 0.56 s for the white dwarf in IGR
J00234+6141. The X-ray pulses are observed up to about 2 keV. From XMM-Newton
and Suzaku observations of 1RXS J213344.1+510725, we find a rotational period
of 570.862 +/- 0.034 s. The observations span three epochs where the pulsation
is observed to change at different energies both in amplitude and shape. In
both objects, the spectral analysis spanned over a wide energy range, from 0.3
to 100 keV, shows the presence of multiple emission components absorbed by
dense material. The X-ray spectrum of IGR J00234+6141 is consistent with a
multi-temperature plasma with a maximum temperature of about 50 keV. In 1RXS
J213344.1+510725, multiple optically thin components are inferred, as well as
an optically thick (blackbody) soft X-ray emission with a temperature of about
100 eV. This latter adds 1RXS J213344.1+510725 to the growing group of soft
X-ray intermediate polars. (abridged)Comment: 12 pages, 8 figures, 5 tables. Accepted for publication in A&
Dynamic biospeckle analysis, a new tool for the fast screening of plant nematicide selectivity
Background: Plant feeding, free-living nematodes cause extensive damage to plant roots by direct feeding and, in the case of some trichodorid and longidorid species, through the transmission of viruses. Developing more environmentally friendly, target-specific nematicides is currently impeded by slow and laborious methods of toxicity testing. Here, we developed a bioactivity assay based on the dynamics of light 'speckle' generated by living cells and we demonstrate its application by assessing chemicals' toxicity to different nematode trophic groups.Results: Free-living nematode populations extracted from soil were exposed to methanol and phenyl isothiocyanate (PEITC). Biospeckle analysis revealed differing behavioural responses as a function of nematode feeding groups. Trichodorus nematodes were less sensitive than were bacterial feeding nematodes or non-trichodorid plant feeding nematodes. Following 24 h of exposure to PEITC, bioactivity significantly decreased for plant and bacterial feeders but not for Trichodorus nematodes. Decreases in movement for plant and bacterial feeders in the presence of PEITC also led to measurable changes to the morphology of biospeckle patterns.Conclusions: Biospeckle analysis can be used to accelerate the screening of nematode bioactivity, thereby providing a fast way of testing the specificity of potential nematicidal compounds. With nematodes' distinctive movement and activity levels being visible in the biospeckle pattern, the technique has potential to screen the behavioural responses of diverse trophic nematode communities. The method discriminates both behavioural responses, morphological traits and activity levels and hence could be used to assess the specificity of nematicidal compounds.</p
Simulations of cubic-tetragonal ferroelastics
We study domain patterns in cubic-tetragonal ferroelastics by solving
numerically equations of motion derived from a Landau model of the phase
transition, including dissipative stresses. Our system sizes, of up to 256^3
points, are large enough to reveal many structures observed experimentally.
Most patterns found at late stages in the relaxation are multiply banded; all
three tetragonal variants appear, but inequivalently. Two of the variants form
broad primary bands; the third intrudes into the others to form narrow
secondary bands with the hosts. On colliding with walls between the primary
variants, the third either terminates or forms a chevron. The multipy banded
patterns, with the two domain sizes, the chevrons and the terminations, are
seen in the microscopy of zirconia and other cubic-tetragonal ferroelastics. We
examine also transient structures obtained much earlier in the relaxation;
these show the above features and others also observed in experiment.Comment: 7 pages, 6 colour figures not embedded in text. Major revisions in
conten
Time domain algorithm for accelerated determination of the first order moment of photo current fluctuations in high speed laser Doppler perfusion imaging
Advances in optical array sensor technology allow for the real time acquisition of dynamic laser speckle patterns generated by tissue perfusion, which, in principle, allows for real time laser Doppler perfusion imaging (LDPI). Exploitation of these developments is enhanced with the introduction of faster algorithms to transform photo currents into perfusion estimates using the first moment of the power spectrum. A time domain (TD) algorithm is presented for determining the first-order spectral moment. Experiments are performed to compare this algorithm with the widely used Fast Fourier Transform (FFT). This study shows that the TD-algorithm is twice as fast as the FFT-algorithm without loss of accuracy. Compared to FFT, the TD-algorithm is efficient in terms of processor time, memory usage and data transport
- …
