7,576 research outputs found

    Si/Ge hole-tunneling double-barrier resonant tunneling diodes formed on sputtered flat Ge layers

    No full text
    We have demonstrated Si/Ge hole-tunneling double-barrier resonant tunneling diodes (RTDs) formed on flat Ge layers with a relaxation rate of 89% by our proposed method; in this method, the flat Ge layers can be directly formed on highly B-doped Si(001) substrates using our proposed sputter epitaxy method. The RTDs exhibit clear negative differential resistance effects in the static current–voltage (I–V) curves at room temperature. The quantized energy level estimation suggests that resonance peaks that appeared in the I–V curves are attributed to hole tunneling through the first heavy- and light-hole energy levels

    Imprint of Gravitational Lensing by Population III Stars in Gamma Ray Burst Light Curves

    Get PDF
    We propose a novel method to extract the imprint of gravitational lensing by Pop III stars in the light curves of Gamma Ray Bursts (GRBs). Significant portions of GRBs can originate in hypernovae of Pop III stars and be gravitationally lensed by foreground Pop III stars or their remnants. If the lens mass is on the order of 102−103M⊙10^2-10^3M_\odot and the lens redshift is greater than 10, the time delay between two lensed images of a GRB is ≈1\approx 1s and the image separation is ≈10ÎŒ\approx 10 \muas. Although it is difficult to resolve the two lensed images spatially with current facilities, the light curves of two images are superimposed with a delay of ≈1\approx 1 s. GRB light curves usually exhibit noticeable variability, where each spike is less than 1s. If a GRB is lensed, all spikes are superimposed with the same time delay. Hence, if the autocorrelation of light curve with changing time interval is calculated, it should show the resonance at the time delay of lensed images. Applying this autocorrelation method to GRB light curves which are archived as the {\it BATSE} catalogue, we demonstrate that more than half light curves can show the recognizable resonance, if they are lensed. Furthermore, in 1821 GRBs we actually find one candidate of GRB lensed by a Pop III star, which may be located at redshift 20-200. The present method is quite straightforward and therefore provides an effective tool to search for Pop III stars at redshift greater than 10. Using this method, we may find more candidates of GRBs lensed by Pop III stars in the data by the {\it Swift} satellite.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Spin and interaction effects in quantum dots: a Hartree-Fock-Koopmans approach

    Full text link
    We use a Hartree-Fock-Koopmans approach to study spin and interaction effects in a diffusive or chaotic quantum dot. In particular, we derive the statistics of the spacings between successive Coulomb-blockade peaks. We include fluctuations of the matrix elements of the two-body screened interaction, surface-charge potential, and confining potential to leading order in the inverse Thouless conductance. The calculated peak-spacing distribution is compared with experimental results.Comment: 5 pages, 4 eps figures, revise

    Effects of carbon incorporation on doping state of YBa2Cu3Oy

    Full text link
    Effects of carbon incorporation on the doping state of YBa2Cu3Oy (Y-123) were investigated. Quantitative carbon analysis revealed that carbon could be introduced into Y-123 from both the precursor and the sintering gas. Nearly carbon-free (< 200 ppm) samples were prepared from a vacuum-treated precursor by sintered at 900 &#730;C and cooling with 20 &#730;C /min in flowing oxygen gas. The lower Tc (= 88 K) and higher oxygen content (y = 6.98) strongly suggested the overdoping state, which was supported by the temperature dependence of resisitivity and thermoelectric power. The nuclear quadrapole resonance spectra and the Raman scattering spectra indicated that there was almost no oxygen defect in the Cu-O chain in these samples. On the other hand, in the same cooling condition, the samples sintered in air stayed at optimal doping level with Tc = 93 K, and the intentionally carbon-doped sample was in the underdoping state. It is revealed that about 60% of incorporated carbon was substituted for Cu at the chain site in the form of CO32+, and the rest remains at the grain boundary as carbonate impurities. Such incorporation affected the oxygen absorption process in Y-123. It turned out that the oxygen content in Y-123 cannot be controlled only by the annealing temperature and the oxygen partial pressure but also by the incorporated carbon concentration.Comment: 16pages, 9figure

    Triaxial deformation in 10Be

    Get PDF
    The triaxial deformation in 10^{10}Be is investigated using a microscopic α+α+n+n\alpha+\alpha+n+n model. The states of two valence neutrons are classified based on the molecular-orbit (MO) model, and the π\pi-orbit is introduced about the axis connecting the two α\alpha-clusters for the description of the rotational bands. There appear two rotational bands comprised mainly of Kπ=0+K^\pi = 0^+ and Kπ=2+K^\pi = 2^+, respectively, at low excitation energy, where the two valence neutrons occupy Kπ=3/2−K^\pi = 3/2^- or Kπ=1/2−K^\pi = 1/2^- orbits. The triaxiality and the KK-mixing are discussed in connection to the molecular structure, particularly, to the spin-orbit splitting. The extent of the triaxial deformation is evaluated in terms of the electro-magnetic transition matrix elements (Davydov-Filippov model, Q-invariant model), and density distribution in the intrinsic frame. The obtained values turned out to be Îł=15o∌20o\gamma = 15^o \sim 20^o.Comment: 15 pages, latex, 3 figure

    Local moment formation in quantum point contacts

    Full text link
    Spin-density-functional theory of quantum point contacts (QPCs) reveals the formation of a local moment with a net of one electron spin in the vicinity of the point contact - supporting the recent report of a Kondo effect in a QPC. The hybridization of the local moment to the leads decreases as the QPC becomes longer, while the onsite Coulomb-interaction energy remains almost constant.Comment: 10 pages, 3 figures, accepted for publication in Physical Review Letter

    Conductance Fluctuations in Disordered Wires with Perfectly Conducting Channels

    Full text link
    We study conductance fluctuations in disordered quantum wires with unitary symmetry focusing on the case in which the number of conducting channels in one propagating direction is not equal to that in the opposite direction. We consider disordered wires with N+mN+m left-moving channels and NN right-moving channels. In this case, mm left-moving channels become perfectly conducting, and the dimensionless conductance gg for the left-moving channels behaves as g→mg \to m in the long-wire limit. We obtain the variance of gg in the diffusive regime by using the Dorokhov-Mello-Pereyra-Kumar equation for transmission eigenvalues. It is shown that the universality of conductance fluctuations breaks down for m≠0m \neq 0 unless NN is very large.Comment: 6 pages, 2 figure

    Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei II. Prediction from our Sweeping Magnetic Twist Model for the Wiggled Parts of AGN Jets and Tails

    Full text link
    Distributions of Faraday rotation measure (FRM) and the projected magnetic field derived by a 3-dimensional simulation of MHD jets are investigated based on our "sweeping magnetic twist model". FRM and Stokes parameters were calculated to be compared with radio observations of large scale wiggled AGN jets on kpc scales. We propose that the FRM distribution can be used to discuss the 3-dimensional structure of magnetic field around jets and the validity of existing theoretical models, together with the projected magnetic field derived from Stokes parameters. In the previous paper, we investigated the basic straight part of AGN jets by using the result of a 2-dimensional axisymmetric simulation. The derived FRM distribution has a general tendency to have a gradient across the jet axis, which is due to the toroidal component of the magnetic field generated by the rotation of the accretion disk. In this paper, we consider the wiggled structure of the AGN jets by using the result of a 3-dimensional simulation. Our numerical results show that the distributions of FRM and the projected magnetic field have a clear correlation with the large scale structure of the jet itself, namely, 3-dimensional helix. Distributions, seeing the jet from a certain direction, show a good matching with those in a part of 3C449 jet. This suggests that the jet has a helical structure and that the magnetic field (especially the toroidal component) plays an important role in the dynamics of the wiggle formation because it is due to a current-driven helical kink instability in our model.Comment: Accepted for publication in Ap
    • 

    corecore