5 research outputs found

    Toward an integrative and predictive sperm quality analysis in Bos taurus

    Get PDF
    There is a need to develop more integrative sperm quality analysis methods, enabling researchers to evaluate different parameters simultaneously cell by cell. In this work, we present a new multi-parametric fluorescent test able to discriminate different sperm subpopulations based on their labeling pattern and motility characteristics. Cryopreserved semen samples from 20 Holstein bulls were used in the study. Analyses of sperm motility using computer-assisted sperm analysis (CASA-mot), membrane integrity by acridine orange-propidium iodide combination and multi-parametric by the ISAS®3Fun kit, were performed. The new method allows a clear discrimination of sperm subpopulations based on membrane and acrosomal integrity, motility and morphology. It was also possible to observe live spermatozoa showing signs of capacitation such as hyperactivated motility and changes in acrosomal structure. Sperm subpopulation with intact plasma membrane and acrosome showed a higher proportion of motile sperm than those with damaged acrosome or increased fluorescence intensity. Spermatozoa with intact plasmalemma and damaged acrosome were static or exhibit weak movement. Significant correlations among the different sperm quality parameters evaluated were also described. We concluded that the ISAS®3Fun is an integrated method that represents an advance in sperm quality analysis with the potential to improve fertility predictions

    Ability of the isas3fun method to detect sperm acrosome integrity and its potential to discriminate between high and low field fertility bulls

    Get PDF
    The objective of the present study was to investigate whether fertility differences in bulls are reflected in variations of sperm quality when analysing only one ejaculate per male. Two experiments were performed. In the first experiment, frozen semen samples from 20 adult bulls were tested; 10 bulls had high field fertility and 10 bulls had low field fertility. Analyses of sperm motility, membrane integrity, and membrane–acrosome integrity with the ISAS3Fun method were performed. Sperm morphometry of the fluorescence sperm subpopulations obtained with the ISAS3Fun method was also analysed. Significant differences between high-and low-fertility groups were only found with the ISAS3Fun technique, specifically in sperm acrosome integrity, the proportion of spermatozoa with an intact acrosome and damaged membrane, and in sperm head width of spermatozoa with intact structures. Discriminant analyses allowed us to correctly classify 90% of sperm samples in their fertility group using sperm quality parameters. Given that only the results obtained with the ISAS3Fun technique were related to bull fertility, we performed a second experiment aimed to validate the efficacy of this technique to detect the acrosomal integrity of bull spermatozoa, comparing them with the conventional FITC-PNA/propidium iodide (PNA/PI) combination under capacitating conditions. The results indicated that the ISAS3Fun combination provided an accurate assessment of both viability and acrosomal integrity for ejaculated spermatozoa, while the PNA/PI combination underestimated the extension of acrosomal damage due to false negatives. It was concluded that the simultaneous assessment of sperm plasma membranes and acrosome integrity with the ISAS3Fun method is precise and seems to have a greater potential to discriminate between high-and low-fertility bulls than more conventional in vitro sperm quality tests. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination

    Get PDF
    The aim of the study was to compare the morphometric features of sperm head size and shape from the Pietrain line and the Duroc × Pietrain boar crossbred terminal lines, and to evaluate their relationship with reproductive success after artificial insemination of sows produced from crossbreeding the York, Landrace and Pietrain breeds. Semen samples were collected from 11 sexually mature boars. Only ejaculates with greater than 70% motility rate and <15% of abnormal sperm were used for artificial inseminations (AI) and included in the study. Samples were analyzed using an ISAS®v1 computer-assisted sperm analysis system for eight morphometric parameters of head shape and size (CASA-Morph). Sub-populations of morphometric ejaculates were characterized using multivariate procedures, such as principal component (PC) analysis and clustering methods (k-means model). Four different ejaculate sub-populations were identified from two PCs that involved the head shape and size of the spermatozoa. The discriminant ability of the different morphometric sperm variables to predict sow litter size was analyzed using a receiver operating characteristics (ROC) curve analysis. Sperm head length, ellipticity, elongation, and regularity showed significant predictive capacity on litter size (0.59, 0.59, 0.60, and 0.56 area under curve (AUC), respectively). The morphometric sperm sub-populations were not related to sow litter size

    Effect of sperm concentration and storage temperature on goat spermatozoa during liquid storage

    Get PDF
    The use of cooled semen is relatively common in goats. There are a number of advantages of cooled semen doses, including easier handling of artificial insemination (AI) doses, transport, more AI doses per ejaculate, and higher fertility rates in comparison with frozen AI doses. However, cooled semen has a short shelf life. The objective of this study was to examine the effect of temperature and sperm concentration on the in vitro sperm quality during liquid storage for 48 h, including sperm motility and kinetics, response to oxidation, mitochondrial membrane potential (MMP) and DNA fragmentation in goats. Three experiments were performed. In the first, the effects of liquid preservation of semen at different temperatures (5 °C or 17 °C), durations (0, 24 and 48 h) and sperm concentrations (250 × 106 sperm/mL (1:2 dilution rate), 166.7 × 106 sperm/mL (1:3 dilution rate) or 50 × 106 sperm/mL (1:10 dilution rate)) on sperm motility and kinetics were studied. In the second experiment, the effect of temperature, sperm washing and concentration on sperm motility and DNA fragmentation was studied. Finally, the effect of sperm concentration and duration of storage at 5 °C on sperm motility, response to oxidative stress and MMP was examined. We found that refrigerated liquid storage of goat sperm impaired sperm quality, such as motility, MMP and response to oxidation, as storage time increased; however, sperm DNA fragmentation index was not significantly affected. Liquid storage at 5 °C preserved higher total motility than at 17 °C. Moreover, we observed that the reduction of sperm concentration below 500 × 106 sperm/mL did not seem to improve the quality of spermatozoa conserved in milk-based extender in the conditions teste
    corecore