115 research outputs found

    DACH1 suppresses breast cancer as a negative regulator of CD44.

    Get PDF
    Dachshund homolog 1 (DACH1), a key cell fate determination factor, contributes to tumorigenesis, invasion, metastasis of human breast neoplasm. However, the exact molecular mechanisms for the anti-tumor roles of DACH1 in breast carcinoma are still lack of extensive understanding. Herein, we utilized immunohistochemistry (IHC) staining and public microarray data analysis showing that DACH1 was higher in normal breast, low-grade and luminal-type cancer in comparison with breast carcinoma, high-grade and basal-like tumors respectively. Additionally, both correlation analysis of public databases of human breast carcinoma and IHC analysis of mice xenograft tumors demonstrated that DACH1 inversely related to cancer stem cells (CSCs) markers, epithelial-mesenchymal transition (EMT) inducers and basal-enriched molecules, while cluster of differentiation 44 (CD44) behaved in an opposite manner. Furthermore, mice transplanted tumor model indicated that breast cancer cells Met-1 with up-regulation of DACH1 were endowed with remarkably reduced potential of tumorigenesis. Importantly, meta-analysis of 19 Gene Expression Omnibus (GEO) databases of breast cancer implicated that patients with higher DACH1 expression had prolonged time to death, recurrence and metastasis, while CD44 was a promising biomarker predicting worse overall survival (OS) and metastasis-free survival (MFS). Collectively, our study indicated that CD44 might be a novel target of DACH1 in breast carcinoma

    Anti-parity-time symmetry hidden in a damping linear resonator

    Full text link
    Phase transition from the over-damping to under-damping states is a ubiquitous phenomenon in physical systems. However, what kind of symmetry is broken associated with this phase transition remains unclear. Here, we discover that this phase transition is determined by an anti-parity-time (anti-PT\mathcal{PT}) symmetry hidden in a single damping linear resonator, which is significantly different from the conventional anti-PT\mathcal{PT}-symmetric systems with two or more modes. We show that the breaking of the anti-PT\mathcal{PT} symmetry yields the phase transition from the over-damping to under-damping states, with an exceptional point (EP) corresponding to the critical-damping state. Moreover, we propose an optomechanical scheme to show this anti-PT\mathcal{PT} symmetry breaking by using the optical spring effect in a quadratic optomechanical system. We also suggest an optomechanical sensor with the sensitivity enhanced significantly around the EPs for the anti-PT\mathcal{PT} symmetry breaking. Our work unveils the anti-PT\mathcal{PT} symmetry hidden in damping oscillations and hence opens up new possibilities for exploiting wide anti-PT\mathcal{PT} symmetry applications in single damping linear resonators.Comment: 12 pages, 6 figures, Research Highlight by Prof. Cheng-Wei Qiu: https://www.sciengine.com/SCPMA/doi/10.1007/s11433-023-2195-

    On the number of limit cycles of the Lienard equation

    Full text link
    In this paper, we study a Lienard system of the form dot{x}=y-F(x), dot{y}=-x, where F(x) is an odd polynomial. We introduce a method that gives a sequence of algebraic approximations to the equation of each limit cycle of the system. This sequence seems to converge to the exact equation of each limit cycle. We obtain also a sequence of polynomials R_n(x) whose roots of odd multiplicity are related to the number and location of the limit cycles of the system.Comment: 10 pages, 5 figures. Submitted to Physical Review

    Sodium Fluoride Arrests Renal G2/M Phase Cell-Cycle Progression by Activating ATM-Chk2-P53/Cdc25C Signaling Pathway in Mice

    Get PDF
    Background/Aims: Excessive fluoride intake can induce cytotoxicity, DNA damage and cell-cycle changes in many tissues and organs, including the kidney. However, the underlying molecular mechanisms of fluoride-induced renal cell-cycle changes are not well understood at present. In this study, we used a mouse model to investigate how sodium fluoride (NaF) induces cell-cycle changes in renal cells. Methods: Two hundred forty ICR mice were randomly assigned to four equal groups for intragastric administration of NaF (0, 12, 24 and 48 mg/kg body weight/day) for 42 days. Kidneys were taken to measure changes of the cell-cycle at 21 and 42 days of the experiment, using flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot methods. Results: NaF, at more than 12 mg/kg body weight, induced G2/M phase cell-cycle arrest in the renal cells, which was supported by the finding of significantly increased percentages of renal cells in the G2/M phase. We found also that G2/M phase cell-cycle arrest was accompanied by up-regulation of p-ATM, p-Chk2, p-p53, p-Cdc25C, p-CDK1, p21, and Gadd45a protein expression levels; up-regulation of ATM, Chk2, p53, p21, and Gadd45a mRNA expression levels; down-regulation of CyclinB1, mdm2, PCNA protein expression levels; and down-regulation of CyclinB1, CDK1, Cdc25C, mdm2, and PCNA mRNA expression levels. Conclusion: In this mouse model, NaF, at more than 12 mg/ kg, induced G2/M phase cell-cycle arrest by activating the ATM-Chk2-p53/Cdc25C signaling pathway, which inhibits the proliferation of renal cells and development of the kidney. Activation of the ATM-Chk2-p53/Cdc25C signaling pathway is the mechanism of NaF-induced renal G2/M phase cell-cycle arrest in this model

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore